Abstract
Carbapenem-resistant Acinetobacter baumannii has been considered one of the major threats to patients worldwide. To evaluate carbapenemase in several clinical isolates using phenotypic and genotypic approaches. A total of 49 A. baumannii isolates were tested against imipenem and meropenem discs on Muller Hinton agar, then screened phenotypically through the modified Hodge test (MHT), combined disc test (CDT) and modified carbapenem inactivation method (mCIM). The tested isolates have been subjected to polymerase chain reaction (PCR) detection to identify some carbapenemase-encoding genes and one insertion sequence. The carbapenem resistance profile showed 96% and 94% resistance to imipenem and meropenem, respectively. MHT and mCIM were able to produce carbapenemase in 94% and 98% of isolates, respectively, while CDT was able to produce metallo-B-lactamase (MBL) only in 59.2% of isolates. The PCR amplification of blaOXA-51 has been observed in all isolates. We found blaOXA-23 in 98% of isolates. Insertion sequence ISAba1 was present in all positive blaOXA-23 strains (98%). A blaVIM gene encoding MBL was present in 71% of isolates, but none of the isolates has been positive for blaKPC and blaNDM. The high rate of carbapenem resistance in A. baumannii became a serious threat worldwide. Concerning phenotypic tests, mCIM was the most sensitive compared to MHT and CDT. This study established that blaOXA-23 and blaOXA-51 have been the most prevalent among class D carbapenemase, and blaVIM among class B carbapenemase. The present study suggests that there might be silent carbapenemase genes in carbapenem-sensitive strains.
References
Abbas-Al-Khafaji, Z. K., Aubais-aljelehawy, Q.H. (2021). Evaluation of antibiotic resistance and prevalence of multi-antibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to al-yarmouk hospital. Cellular, Molecular and Biomedical Reports, 1(2), 60-68.
Abouelfetouh, A., Torky, A.S., Aboulmagd, E. (2019). Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrobial Resistance & Infection Control, 8(1), 1-9.
Adzitey, F., Ali, G.R.R., Huda, N., Cogan, T., Corry, J. (2013). Prevalence, antibiotic resistance and genetic diversity of Listeria monocytogenes isolated from ducks, their rearing and processing environments in Penang, Malaysia. Food Control, 32(2), 607-614.
Ali, F.A., Anoar, K. A., Omer, S.A. (2019). Comparison between phenotypic and genotypic detection of Metallo beta lactamase enzyme among gram negative bacteria isolated from burn patient. Journal of Kirkuk Medical College, 7(1), 164-188.
Almasaudi, S.B. (2018). Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi Journal of Biological Sciences, 25(3), 586-596.
Al Meani, S.A., Ahmed, M.M., Abdulkareem, A.H. (2020). Synergistic effect between zingiber officinale volatile oil and meropenem against Acinetobacter baumannii producing-carbapenemase isolated from neurosurgery in Iraq. Syst. Rev. Pharm, 11(9), 920-925.
Asgin, N., Otlu, B., Cakmakliogullari, E.K., Celik, B. (2019). High prevalence of TEM, VIM, and OXA-2 beta-lactamases and clonal diversity among Acinetobacter baumannii isolates in Turkey. The Journal of Infection in Developing Countries, 13(09), 794-801.
Avila-Novoa, M.G., Solis-Velazquez, O.A., Rangel-Lopez, D.E., Gonzalez-Gomez, J.P., Guerrero-Medina, P.J., Gutierrez-Lomelí, M. (2019). Biofilm formation and detection of fluoroquinolone-and carbapenem-resistant genes in multidrug-resistant Acinetobacter baumannii. Canadian Journal of Infectious Diseases and Medical Microbiology, 2019, 3454907.
Benmahmod, A.B., Said, H.S., Ibrahim, R.H. (2019). Prevalence and mechanisms of carbapenem resistance among Acinetobacter baumannii clinical isolates in Egypt. Microbial Drug Resistance, 25(4), 480-488.
Dashti, A.A., Jadaon, M.M., Abdulsamad, A.M., Dashti, H.M. (2009). Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J, 41(2), 117-122.
El-Hady, A., Hanaa, I., Abdelhadi, A.A. (2021). Expression of metallo-b-lactamase genes in carbapenem resistant Acinetobacter baumannii isolates from intensive care unit patients. Microbes and Infectious Diseases, 2(4), 797-806.
Ellington, M.J., Kistler, J., Livermore, D. M., Woodford, N. (2007). Multiplex PCR for rapid detection of genes encoding acquired metallo-b-lactamases. Journal of Antimicrobial Chemotherapy, 59(2), 321-322.
Evans, B., Amyes, S. (2014). Oxa b-lactamase. Clin Microbiol Rev, 27, 241-263.
Falagas, M.E., Koletsi, P.K., Bliziotis, I.A. (2006). The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Medical Microbiology, 55(12), 1619-1629.
Ganjo, A.R., Maghdid, D.M., Mansoor, I.Y., Kok, D.J., Severin, J.A., Verbrugh, H.A., Goessens, W. (2016). OXA-carbapenemases present in clinical Acinetobacter baumannii-calcoaceticus complex isolates from patients in Kurdistan region, Iraq. Microbial Drug Resistance, 22(8), 627-637.
Ghaima, K.K. (2018). Distribution of extended spectrum beta-lactamase (ESBL) genes among Acinetobacter baumannii isolated from burn infections. MOJ Cell Sci Rep, 5(3), 42-46.
Ghaima, K.K., Saadedin, S.M.K., Jassim, K.A. (2016). Isolation, molecular identification and antimicrobial susceptibility of Acinetobacter baumannii isolated from Baghdad hospitals. Int. J. of Sci. and Res. Pub., 6, (5), 341-356.
Haji, S.H., Aka, S.T.H., Ali, F.A. (2021). Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PloS One, 16(11), e0259005.
Heritier, C., Poirel, L., Lambert, T., Nordmann, P. (2005). Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 49(8), 3198-3202.
Hong, S.S., Kim, K., Huh, J.Y., Jung, B., Kang, M.S., Hong, S.G. (2012). Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Annals of Laboratory Medicine, 32(5), 359-361.
Hou, C., Yang, F. (2015). Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. International Journal of Clinical and Experimental Medicine, 8(8), 13859.
Hujer, K.M., Hujer, A.M., Hulten, E.A., Bajaksouzian, S., Adams, J.M., Donskey, C.J., Bonomo, R.A. (2006). Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrobial Agents and Chemotherapy, 50(12), 4114-4123.
Kadom, S.M., Abid, I.N. (2020). Detection of bla OXA-51-like and bla VIM Carbapenemase Genes in Acinetobacter baumannii isolated from burn patients. International Journal of Pharmaceutical Research, 12(2).
Makharita, R.R., El-Kholy, I., Hetta, H.F., Abdelaziz, M.H., Hagagy, F.I., Ahmed, A.A., Algammal, A.M. (2020). Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections. Infection and Drug Resistance, 13, 3991.
Martin-Aspas, A., Guerrero-Sanchez, F.M., Garcia-Colchero, F., Rodriguez-Roca, S., Giron-Gonzalez, J.A. (2018). Differential characteristics of Acinetobacter baumannii colonization and infection: risk factors, clinical picture, and mortality. Infection and drug resistance, 11, 861.
Mohajeri, P., Farahani, A., Feizabadi, M.M., Ketabi, H., Abiri, R., Najafi, F. (2013). Antimicrobial susceptibility profiling and genomic diversity of Acinetobacter baumannii isolates: A study in western Iran. Iranian journal of microbiology, 5(3), 195.
Munoz, L.S., Weinstein, R.A. (2008). Acinetobacter infection. N Engl J Med, 358, 1271-81.
Nordmann, P., Poirel, L. (2019). Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clinical Infectious Diseases, 69(Supplement_7), S521-S528.
Peleg, A.Y., Seifert, H., Paterson, D.L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clinical Microbiology Reviews, 21(3), 538-582.
Poirel, L., Hombrouck-Alet, C., Freneaux, C., Bernabeu, S., Nordmann, P. (2010). Global spread of New Delhi metallo-b-lactamase 1. The Lancet infectious diseases, 10(12), 832.
Poirel, L., Nordmann, P. (2006). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clinical Microbiology and Infection, 12(9), 826-836.
Qader, M.K. (2021). Molecular Study of Acinetobacter baumannii Using 16srRNA and BlaOxa-51 gene isolated from hospitals in Duhok-Kurdistan Region, Iraq. Journal of Duhok University, 24(1), 19-25.
Rahman, M., Prasad, K.N., Gupta, S., Singh, S., Singh, A., Pathak, A., Gonzalez-Zorn, B. (2018). Prevalence and molecular characterization of New Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India. Microbial Drug Resistance, 24(6), 792-798.
Rezaei, A., Fazeli, H., Moghadampour, M., Halaji, M., Faghri, J. (2018). Determination of antibiotic resistance pattern and prevalence of OXA-type carbapenemases among Acinetobacter baumannii clinical isolates from inpatients in Isfahan, central Iran. Infez Med, 26(1), 61-66.
Ridha, D.J., Ali, M.R., Jassim, K.A. (2019). Molecular analysis of multi–drug resistant Acinetobacter baumannii isolated in Baghdad hospital. Int. J. Res. Pharm. Sci., 10(3), 1970-1987.
Segal, H., Jacobson, R.K., Garny, S., Bamford, C.M., Elisha, B.G. (2007). Extended- 10 promoter in IS Aba-1 upstream of bla OXA-23 from Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 51(8), 3040-3041.
Smail, S.B., AL-Otrachi, K.I. (2020). Phenotypic characterization of Extended-Spectrum Beta-Lactamases and Metallo-Beta-Lactamase of multi drug resistant Acinetobacter baumannii causing nosocomial infections in Erbil city. Al-Mustansiriyah J Sci,30,51-6.
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., Zorzet, A. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318-327.
Tafreshi, N., Babaeekhou, L., Ghane, M. (2019). Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: increase in prevalence of blaOXA-24-like and blaOXA-58-like genes. Iranian Journal of Microbiology, 11(6), 502.
Tawfeeq, H.R., Rasheed, M.N., Hassan, R.H., Musleh, M.H., Nader, M.I. (2020). Molecular detection of blaoxa genes in Acinetobacter baumannii collected from patients with various infections. Biochem. Cell. Arch, 20(1), 1233-1239.
Turton, J.F., Ward, M.E., Woodford, N., Kaufmann, M.E., Pike, R., Livermore, D.M., Pitt, T.L. (2006). The role of IS Aba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiology Letters, 258(1), 72-77.
Tuwaij, N.S. (2016). Molecular screening of some b-Lactam resistance genes producing clinical isolates of Acinetobacter baumannii. J. Babyl. Univery/Pure Appl. Sci, 24(7), 1799-1809.
Vu, T.N., Byun, J.H., D'Souza, R., Pinto, N.A., Yong, D., Chong, Y. (2020). Adjustment of modified carbapenem inactivation method conditions for rapid detection of carbapenemase-producing Acinetobacter baumannii. Annals of Laboratory Medicine, 40(1), 21-26.
Walsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P. (2005). Metallo-B-lactamases: the quiet before the storm?. Clinical Microbiology Reviews, 18(2), 306-325.
Walther-Rasmussen, J., Hoiby, N. (2006). OXA-type carbapenemases. Journal of Antimicrobial Chemotherapy, 57(3), 373-383.
Wayne PA (2021). Clinical and Laboratory Standards Institute: performance standards for antimicrobial susceptibility testing. CLSI document M100-S31.
Woodford, N., Ellington, M.J., Coelho, J.M., Turton, J.F., Ward, M.E., Brown, S., Livermore, D.M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents, 27(4), 351-353.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2022 Array