Published 2025-06-23
Keywords
- Pseudomonas aeruginosa,
- Antibiotic resistance,
- ESBL,
- MBL,
- Iraq
How to Cite
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, causes a range of infections, including those affecting the skin and soft tissues, pneumonia, and sepsis. Its significance lies in its capacity to develop resistance to numerous antibiotic classes. In Iraq, infections caused by Pseudomonas are prevalent, especially within healthcare settings. Studies indicate a concerning level of antibiotic resistance in this microorganism. Information regarding the genetic basis of this resistance is limited in Iraq, with existing research typically involving small sample sizes. The growing resistance to ?-lactams in Iraq is a serious concern, especially the extended-spectrum ?-lactamases (ESBLs). Metallo-?-lactamases (MBLs) such as VIM and NDM are causing a rise in the resistance to carbapenems. The limited data about the resistance patterns to quinolones and aminoglycosides is another barrier. The high prevalence of Pseudomonas aeruginosa combined with limited data on its resistance pathways in Iraq highlights the need for continued surveillance, stronger infection control measures, and the development of more targeted treatment options to address this challenging pathogen.
References
- Abdelrahman, D.N., Taha, A.A., Dafaallah, M.M., Mohammed, A.A., El Hussein, A.R.M., Hashim, A.A., Hamedelnil, Y.F., Altayb, H.N. (2021). ?-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1) and class C ?-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Research, 9(774).
- Abdulameer, H.H., Abdulhassan, G.A. (2021). Occurrence of Point mutations in gyrA and parC Genes of Ciprofloxacin-Resistant Pseudomonas aeruginosa Isolated from Burn Infections. Iraqi Journal of Science, 62(10), 3457–3466.
- Aghazadeh, M., Kafil, H.S., Ghotaslou, R., Asgharzadeh, M., Moghadami, M., Akhi, M.T., Hojabri, Z., Naghili, B., Najafi, K., Azimi, S., Shokrian, S., (2016). Prevalence of oxacillinase groups I, II and III in Pseudomonas aeruginosa isolates by polymerase chain reaction and genotyping by ERIC-PCR methods. Jundishapur J Microbiol, 9(12), e38129.
- Ahmed, O.B., Asghar, A.H., Bahwerth, F.S. (2015). Prevalence of ESBL genes of Pseudomonas aeruginosa strains isolated from Makkah Hospitals, Saudi Arabia. European Journal of Biology and Medical Science Research, 3(6), 12-18.
- Akasaka, T., Onodera, Y., Tanaka, M., Sato, K. (1999). Cloning, expression, and enzymatic characterization of Pseudomonas aeruginosa topoisomerase IV. Antimicrobial Agents and Chemotherapy, 43(3), 530–536.
- Akasaka, T., Tanaka, M., Yamaguchi, A., Sato, K. (2001). Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: Role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrobial Agents and Chemotherapy, 45(8), 2263–2268.
- Akhi, M.T., Khalili, Y., Ghottaslou, R., Aghazadeh, M., Bar Haghi, M.H.S., Yousefi, S. (2012). Prevalence of PER-1- type extended-spectrum Beta-Lactamases in clinical strains of Pseudomonas aeruginosa isolated from Tabriz, Iran. Iranian Journal of Basic Medical Sciences, 15(1), 678–682.
- Ali, K.A., Ghassan, E. (2024). Detection of efflux pump MexX and MexY genes in multidrug resistant Pseudomonas aeruginosa. Iraqi Journal of Science, 65(10), 5455–5465.
- Alam, N.A., Sarvari, J., Motamedifar, M., Khoshkharam, H., Yousefi, M., Moniri, R., Bazargani, A. (2018). The occurrence of blaTEM, blaSHV and blaOXA genotypes in Extended-Spectrum ?-Lactamase (ESBL)-producing Pseudomonas aeruginosa strains in Southwest of Iran. Gene Reports, 13, 19–23.
- Alatoom, A., Alattas, M., Alraddadi, B., Moubareck, C.A., Hassanien, A., Jamal, W., Kurdi, A., Mohamed, N., Senok, A., Somily, A.M., H Ziglam, H. (2024). Antimicrobial resistance profiles of Pseudomonas aeruginosa in the Arabian Gulf region over a 12-year period (2010–2021). Journal of Epidemiology and Global Health, 14(3), 529–548.
- Al-garawyi, A.M.A. (2020). Phenotypic detection of AmpC ?-lactamase in Pseudomonas aerogenosa isolated from burns and wounds in Al-Rumetha Hospitals. Indian Journal of Forensic Medicine & Toxicology, 14(2), 790–797.
- Alghreri, A.A.A., Alsaadi, K.A., Al-Dahmoshi, H.O.M. (2022). Prevalence of blaIMP-1 among P. aeruginosa isolated from patients with burn infections. Journal of Applied and Natural Science, 14(3), 1062–1066.
- Ali, S., Assafi, M. (2024). Prevalence and antibiogram of Pseudomonas aeruginosa and Staphylococcus aureus clinical isolates from burns and wounds in Duhok City, Iraq. The Journal of Infection in Developing Countries, 18(01), 82–92.
- Alikhani, M.Y., Parsavash, S., Arabestani, M.R., Hosseini, S.M. (2017). Prevalence of antibiotic resistance and class 1 integrons in clinical and environmental isolates of Pseudomonas aeruginosa. Avicenna J Clin Microbiol Infect, 4(4), 12086–12086.
- Aljanabi, F.A., Alnaji, H.K. Duaibel, A. (2018). PCR for the detection of extended spectrum ?-Lactamases genes of Pseudomonas aeruginosa. International Journal of Current Microbiology and Applied Sciences, 7(11), 3402–3408.
- Al-Jubori, S., Ameen, H., Al-Kadmy, I. (2015). Molecular detection of aminoglycoside resistance mediated by efflux pump and modifying enzymes in Pseudomonas aeruginosa isolated from Iraqi hospitals. Paper presented at the Int'l Conf. on Medical Genetics. Cellular & Molecular Biology, Pharmaceutical & Food Sciences. (GCMBPF-2015) June 5-6, 2015 Istanbul.
- Al-Jumaili, A.A., Ahmed, K.K. (2024). A review of antibiotic misuse and bacterial resistance in Iraq. Eastern Mediterranean Health Journal, 30(10), 663–670.
- Al-jumaily, A.K.T., Turkie, A.M. (2018). Molecular investigation of gene expression of beta-lactamase enzymes gen for Pseudomonas aeruginosa bacteria. Iraqi Journal of Agricultural Sciences, 49(5).
- Alkhulaifi, Z.M., Mohammed, K.A. (2023). Prevalence and molecular analysis of antibiotic resistance of Pseudomonas aeruginosa isolated from clinical and environmental specimens in Basra, Iraq. Iranian Journal of Microbiology, 15(1). 45-54.
- Alsaadi, L.A., Al-Dulaimi, A.A.F., Al-Taai, H.R.R. (2020). Prevalence of blaVIM , blaIMP and blaNDM genes in carbapenem resistant Pseudomonas aeruginosa isolated from different clinical infections in Diyala, Iraq. Indian Journal of Public Health Research & Development, 11(2), 2258-2264.
- AL-Zwaid, A. J.A., Al-Dahmoshi, H.O.M. (2022). Molecular investigation of Pseudomonas aeruginosa mexAB-oprM efflux pump genes from clinical samples and their correlation with antibiotic resistance. Journal of Applied and Natural Science, 14(1), 140-147.
- Amirkamali, S., Naserpour-Farivar, T., Azarhoosh, K., Peymani, A. (2017). Distribution of the bla OXA , bla VEB-1 , and bla GES-1 genes and resistance patterns of ESBL-producing Pseudomonas aeruginosa isolated from hospitals in Tehran and Qazvin, Iran. Revista da Sociedade Brasileira de Medicina Tropical, 50(3), 315–320.
- Assafi, M., Mohammed, R., Hussein, N. (2015). Nasal carriage rates of Staphylococcus aureus and CA-Methicillin Resistant Staphylococcus aureus among university students. Journal of Microbiology Research, 5, 123–127.
- Babak, P., Sahar, Y., Somaye, Y., Shima, M., Sepideh, K.V., Setareh, M. (2016). Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iranian Journal of Microbiology, 8(4), 249–256.
- Bahmani, N., Ramazanzadeh, R. (2013). Detection of SHV type Extended-Spectrum B-lactamase and risk factors in Pseudomonas aeruginosa clinical isolates. Pak J Med Sci, 29(3), 788–792.
- Bahrami, M., Mmohammadi-Sichani, M., Karbasizadeh, V. (2018). Prevalence of SHV, TEM, CTX-M and OXA-48 ?-Lactamase genes in clinical isolates of Pseudomonas aeruginosa in Bandar-Abbas, Iran. Avicenna J Clin Microbiol Infect, 5(4), 86–90.
- Bokaeian, M., Shahraki Zahedani, S., Soltanian Bajgiran, M., Ansari Moghaddam, A. (2015). Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum ?-Lactamases. Jundishapur J Microbiol, 8(1), e13783.
- Cabot, G., Ocampo-Sosa, A.A., Tubau, F., Macia, M.D., Rodríguez, C., Moya, B., Zamorano, L., Suárez, C., Peña, C., Luis Martínez-Martínez, L., Oliver, A. (2011). Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: Prevalence and impact on resistance in a spanish multicenter study. Antimicrobial Agents and Chemotherapy, 55(5), 1906–1911.
- Chaudhary, M., Payasi, A. (2014). Resistance patterns and prevalence of the aminoglycoside modifying enzymes in clinical isolates of gram negative pathogens. Global Journal of Pharmacology, 8(1), 73–79.
- Chayad, H., Al-Janahi, L., Alfadhul, S., Almohana, A., Alsherees, H., Al-Sherees, A. (2020). Dissemination of new delhi metallo-?-lactamase (blandm) gene in Pseudomonas aeruginosa isolates from burn center in Najaf, Iraq. International Journal of Information Research and Review, 7(9), 7071-7076.
- Chen, Z., Niu, H., Chen, G., Li, M., Li, M., Zhou, Y. (2015). Prevalence of ESBLs-producing Pseudomonas aeruginosa isolates from different wards in a Chinese teaching hospital. Int J Clin Exp Med, 8(10), 19400–19405.
- Dakhl, Z.F., Alwan, S.K. (2015). Dissemination of aminoglycosides Resistance in Pseudomonas aeruginosa isolates in Al-Diwaniya Hospitals. Int. J. of Adv. Res., 3(11), 376–384.
- Danel, F., Hall, L.M.C., Gur, D., Akalin, H.E., Livermore, D.M. (1995). Transferable production of PER-1 ?-lactamase in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 35(2), 281–294.
- Dong, F., Xu, X.W., Song, W.Q., Lü, P., Yang, Y.H., Shen, X.Z. (2008). Analysis of resistant genes of beta-lactam antibiotics from Pseudomonas aeruginosa in pediatric patients. Zhonghua Yi Xue Za Zhi, 88(42), 3012–3015.
- El-Far, S. W., Abukhatwah, M.W. (2023). Prevalence of aminoglycoside resistance genes in clinical isolates of Pseudomonas aeruginosa from Taif, Saudi Arabia—An emergence indicative study. Microorganisms, 11(9). 229.
- Isik, S.A., Yenilmez, E., Cetinkaya, R.A., Gorenek, L., Kose, S. (2021). A meta-analysis of antibiotic resistance rates in Pseudomonas aeruginosa isolated in blood cultures in Turkey between 2007 and 2017. Northern Clinics of ?stanbul, 8(3), 286–297.
- Elfadadny, A., Ragab, R. F., AlHarbi, M., Badshah, F., Ibáñez-Arancibia, E., Farag, A., Hendawy, A.O., Ríos-Escalante, P.R.D.L., Aboubakr, M., Zakai, S.A., Nageeb, W.M. (2024). Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Frontiers in Microbiology, 15.1374466.
- Ganjo, A.R., Mansoor, I.Y. (2020). Molecular detection of blaOXA-10(OXA-10) type Beta-lactamase encoding gene among extended spectrum Beta-lactamase isolates of Pseudomonas aeruginosa. Zanco Journal of Medical Sciences, 24(2), 314–319.
- Ghasemian, A., Salimian Rizi, K., Rajabi Vardanjani, H., Nojoomi, F. (2018). Prevalence of Clinically Isolated Metallo-beta-lactamase-producing Pseudomonas aeruginosa, Coding Genes, and Possible Risk Factors in Iran. Iranian Journal of Pathology, 13(1), 1–9.
- Godoy, P., Molina-Henares, A.J., De La Torre, J., Duque, E., Ramos, J.L. (2010). Characterization of the RND family of multidrug efflux pumps: in silico to in vivo confirmation of four functionally distinct subgroups. Microbial Biotechnology, 3(6), 691–700.
- Hassan, J.S., Al-Safar, M.A., Abdul Rhman, T.R. (2019). The role of DNA Gyrase (gyrA) in Ciprofloxacin-Resistant locally isolates Pseudomonas aeruginosa in Al-Khadhmiya teaching hospital Baghdad, Iraq. Journal of Pure and Applied Microbiology, 13(1), 499–503.
- Hussein, N., Salih, R.S., Rasheed, N.A. (2019). Prevalence of methicillin-resistant Staphylococcus aureus in hospitals and community in Duhok, Kurdistan Region of Iraq. International Journal of Infection, 6(2), e89636.
- Hussein, N.R. (2022). The prevalence of procalcitonin positivity in patients with severe Covid-19. Journal of Contemporary Medical Sciences, 8(4), 281–283.
- Hussein, N.R., Daniel, S., Salim, K., Assafi, M.S. (2018). Urinary tract infections and antibiotic sensitivity patterns among women referred to Azadi Teaching hospital, Duhok, Iraq. Avicenna J Clin Microbiol Infect, 5(2), 27–30.
- Hussein, N.R., Naqid, I.A., Saleem, Z.S.M. (2020). A retrospective descriptive study characterizing coronavirus disease epidemiology among people in the Kurdistan Region, Iraq. Mediterranean Journal of Hematology and Infectious Diseases, 12(1), e2020061.
- Imani Foolad, A., Rostami, Z., Shapouri R. (2010). Antimicrobial resistance and ESBL prevalence in Pseudomonas aeruginosa strains isolated from clinical specimen by phenotypic and genotypic methods. J Ardabil U Med Sci, 10(3), 189-198.
- Kallová, J., Kettner, M., Ma?i?ková, T., Milošovi?, P., Langšádl, L. (1997). Aminoglycoside resistance. Enzymatic mechanisms in clinical bacterial strains in Slovakia during the last decade. FEMS Immunology & Medical Microbiology, 19(1), 89–94.
- Lister, P.D., Wolter, D.J., Hanson, N.D. (2009). Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610.
- Lorusso, A.B., Carrara, J.A., Barroso, C.D., Tuon, F.F., Faoro, H. (2022). Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 23(24).15779.
- Mirsalehian, A., Feizabadi, M., Nakhjavani, F. A., Jabalameli, F., Goli, H., Kalantari, N. (2010). Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum ?-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns, 36(1), 70–74.
- Mohammed, A.A., Hussein, N.R., Arif, S.H., Daniel, S. (2020). Surgical site infection among patients with Staphylococcus aureus nasal carriage. International Journal of Surgery Open, 24. 1-7.
- Naghavi, M., Vollset, S.E., Ikuta, K.S., Swetschinski, L.R., Gray, A.P., Wool, E.E., et al. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. The Lancet, 404(10459), 1199–1226.
- Naqid, I.A., Balatay, A.A., Hussein, N.R., Ahmed, H.A., Saeed, K.A., Abdi, S.A. (2020a). Bacterial strains and antimicrobial susceptibility patterns in male urinary tract infections in Duhok Province, Iraq. Middle East Journal of Rehabilitation and Health Studies, 7(3), e103529.
- Naqid, I.A., Hussein, N.R., Balatay, A., Saeed, K.A., Ahmed, H.A. (2020b). Antibiotic susceptibility patterns of uropathogens isolated from female patients with urinary tract infection in Duhok Province, Iraq. Jundishapur Journal of Health Sciences, 12(3), e105146.
- Naqid, I.A., Hussein, N.R., Balatay, A.A., Saeed, K.A., Ahmed, H.A. (2020c). The Antimicrobial resistance pattern of Klebsiella pneumonia isolated from the clinical specimens in Duhok City in Kurdistan Region of Iraq. Journal of Kermanshah University of Medical Sciences, 24(2), e106135.
- Nouri, R., Ahangarzadeh Rezaee, M., Hasani, A., Aghazadeh, M., Asgharzadeh, M. (2016). The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Brazilian Journal of Microbiology, 47(4), 925–930.
- Palzkill, T. (2013). Metallo-?-lactamase structure and function. Annals of the New York Academy of Sciences, 1277(1), 91–104.
- Panahi, T., Asadpour, L., Ranji, N. (2020). Distribution of aminoglycoside resistance genes in clinical isolates of Pseudomonas aeruginosa in north of Iran. Gene Reports, 21, 100929.
- Pang, Z., Raudonis, R., Glick, B. R., Lin, T.J., Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192.
- Paterson, D.L., Bonomo, R.A. (2005). Extended-Spectrum ?-Lactamases: a Clinical Update. Clinical Microbiology Reviews, 18(4), 657–686.
- Pérez-Crespo, P.M.M., Rojas, Á., Lanz-García, J.F., Retamar-Gentil, P., Reguera-Iglesias, J.M., Lima-Rodríguez, O., et al. (2022). Pseudomonas aeruginosa Community-Onset Bloodstream Infections: Characterization, Diagnostic Predictors, and Predictive Score Development—Results from the PRO-BAC Cohort. Antibiotics, 11(6). 707.
- Poirel, L., Naas, T., Nordmann, P. (2008). Genetic support of extended-spectrum ?-lactamases. Clinical Microbiology and Infection, 14, 75–81.
- Polse, R.F., Khalid, H.M., Mero, W.M. S. (2023). Distribution of blaOXA-10, blaPER-1, and blaSHV genes in ESBL-producing Pseudomonas aeruginosa strains isolated from burn patients. Scientific Reports, 13(1), 18402.
- Poole, K. (2005). Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 49(2), 479–487.
- Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., Signal, M.W. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1), 199.
- Rafiee, R., Eftekhar, F., Tabatabaei, S.A., Tehrani, M.D. (2014). Prevalence of Extended-Spectrum and Metallo ?-Lactamase production in AmpC ?-Lactamase producing Pseudomonas aeruginosa isolates from Burns. Jundishapur J Microbiol, 7(9), e16436.
- Raheem, H.Q. (2021). Phenotypic and genotypic detection of fluoroquinolones resistance Pseudomonas aeruginosa isolated from wound and burns infection. Annals of the Romanian Society for Cell Biology, 25(4). 14659-14664.
- Rawat, D., Nair, D. (2010). Extended-spectrum ?-lactamases in Gram negative bacteria. Journal of Global Infectious Diseases, 2(3). 263-274.
- Reynolds, D., Kollef, M. (2021). The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81(18), 2117–2131.
- Sada, M., Kimura, H., Nagasawa, N., Akagawa, M., Okayama, K., Shirai, T., et al. (2022). Molecular Evolution of the Pseudomonas aeruginosa DNA Gyrase gyrA Gene. Microorganisms, 10(8).1660.
- Sales, A.J., Fathi, R.M.H., Bonab, F.R., Kondlaji, K.B., Sadeghnezhadi, M.. (2017). Molecular study of the prevalence of CTX-M1, CT-M2, CTXM3 in Pseudomonas aeruginosa isolated from clinical samples in Tabriz Town, Iran. Electronic Journal of Biology, 13(3), 253–259.
- Salma, R., Dabboussi, F., Kassaa, I., Hamze, M., Dabboussi, F., Hamze, M., (2013). gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. Journal of Infection and Chemotherapy, 19(1), 77–81.
- Sedighi, M., Salehi-Abargouei, A., Oryan, G., Faghri, J. (2014). Epidemiology of VIM-1-imipenem resistant Pseudomonas aeruginosa in Iran: A systematic review and meta-analysis. J Res Med Sci, 19(9), 899–903.
- Sid Ahmed, M.A., Khan, F.A., Sultan, A.A., Söderquist, B., Ibrahim, E.B., Jass, J., Omrani, A.S. (2020). ?-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrobial Resistance & Infection Control, 9(1), 170.
- Tam, V.H., Schilling, A.N., LaRocco, M.T., Gentry, L.O., Lolans, K., Quinn, J.P., Garey, K.W. (2007). Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clinical Microbiology and Infection, 13(4), 413–418.
- Taylor, E., Jauneikaite, E., Sriskandan, S., Woodford, N., Hopkins, K.L. (2022). Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003–2015. International Journal of Antimicrobial Agents, 59(3), 106550.
- Torrens, G., Hernández Sara, B., Juan, A.A., Moya, B., Juan, C., Cava, F., Oliver A. (2019). Regulation of AmpC-Driven ?-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling. mSystems, 4(6), 00524–00519.
- van Burgh, S., Maghdid, D.M., Ganjo, A.R., Mansoor, I.Y., Kok, D.J., Fatah, M.H., Alnakshabandi, A.A., Asad, D., Hammerum, A.M., Ng, K., Klaassen, C., Goessens, W.H.F. (2018). PME and Other ESBL-Positive Multiresistant Pseudomonas aeruginosa Isolated from Hospitalized Patients in the Region of Kurdistan, Iraq. Microbial Drug Resistance, 25(1), 32–38.
- Zhao, W.H., Hu, Z.Q. (2010). ?-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Critical Reviews in Microbiology, 36(3), 245–258.
- Zhao, W.H., Hu, Z.Q. (2013). Epidemiology and genetics of CTX-M extended-spectrum ?-lactamases in Gram-negative bacteria. Critical Reviews in Microbiology, 39(1), 79–101.
- Zowawi, H.M., Syrmis, M.W., Kidd, T.J., Balkhy, H.H., Walsh, T.R., Al Johani, S.M., Al Jindan, R.Y., Alfaresi, M., Ibrahim, E., Al-Jardani, Salman, J., Dashti, A.A. (2018). Identification of carbapenem-resistant Pseudomonas aeruginosa in selected hospitals of the Gulf Cooperation Council States: dominance of high-risk clones in the region. Journal of Medical Microbiology, 67(6), 846–853.