Staphylococcus epidermidis biofilms: Functional molecules; relation to virulence and the host immune response


Staphylococcus epidermidis
Immune defense

How to Cite

Abdul, F., Raheem, I., Abdulrazaq, R., & T. Subhi, H. (2021). Staphylococcus epidermidis biofilms: Functional molecules; relation to virulence and the host immune response. Journal of Life and Bio Sciences Research , 2(02), 42 - 53.


Staphylococcus epidermidis is the most significant nosocomial pathogen related to people with vulnerable frameworks such as malignant growth patients, neonates, and foreign body embedded materials such as heart valves. A few virulence factors in S. epidermidis can cause host damage in comparison to Staphylococcus aureus. In spite of that, the key roles of S. epidermidis virulency rely on biofilm formation, bacterial biofilm is essential for the pathogenesis by encouraging microorganisms to consist shape networks of assurance rather than free planktonic cells, hence resistance to antibacterial agents, and medically uninsured problems by colonizing medical indwelling, making the disease long span, and difficult to treat. The National Institute of Health (NIH) reported 65-80% of bacterial illnesses are biofilm formed, thus making numerous passing wellbeing additional costs. Therefore, the biofilms establishing on the susceptible hosts' tissues demonstrate; preventing antibiotics efficient treatment, protecting against host defense mechanisms, and announce the bacteria virulence determinants manifesting.


Adedoyin, A.E. (2017). Isolation and characterization of carotenoid producing microalgae from KwaZulu-Natal (South Africa) (Master Thesis).

Ahmed, B., Ameen, F., Rizvi, A., Ali, K., Sonbol, H., Zaidi, A., ... & Musarrat, J. (2020). Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS omega, 5(14), 7861-7876.

Alhede, M., Bjarnsholt, T., Givskov, M., Alhede, M. (2014). Pseudomonas aeruginosa biofilms, mechanisms of immune evasion. Advances in applied microbiology, 86,1-40.

Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L., Costerton, J.W. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 33(26), 5967-5982

Aslani, B.A., Ghobadi, S. (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life sciences, 146, 163-173.

Augustyniak, D., Majkowska-Skrobek, G., Roszkowiak, J., Dorotkiewicz-Jach, A. (2017). Defensive and offensive cross-reactive antibodies elicited by pathogens, The Good, the Bad and the Ugly. Current medicinal chemistry, 24(36), 4002-4037.

Banerjee, D., Shivapriya, P.M., Gautam, P.K., Misra, K., Sahoo, A.K., Samanta, S.K. (2020). A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 243-259.

Baroncini, M., Silvi, S., Credi, A. (2019). Photo-and redox-driven artificial molecular motors. Chemical reviews, 120(1), 200-268.

Bastos, M.D.C.D.F., Coutinho, B.G., Coelho, M.L.V. (2010). Lysostaphin, a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals, 3(4), 1139-1161.

Bermudes, D.G. (2020). "Live bacterial vaccines resistant to carbon dioxide (CO2), acidic pH and/or osmolarity for viral infection prophylaxis or treatment." U.S. Patent: USP20190110188722.

Bhattacharya, M., Wozniak, D.J., Stoodley, P., Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert review of anti-infective therapy,13(12), 1499-1516.

Bjarnsholt, T., Alhede, M., Alhede, M., Eickhardt-Sorensen, S.R., Moser, C., Kuhl, M., Hoiby, N. (2013). The in vivo biofilm. Trends in microbiology, 21(9), 466-474.

Bocian, A., Ciszkowicz, E., Hus, K.K., Buczkowicz, J., Lecka-Szlachta, K., Pietrowska, M., Legath, J. (2020). Antimicrobial Activity of Protein Fraction from Naja ashei Venom Against Staphylococcus epidermidis. Molecules, 25(2), 293.

Boisvert, A.A., Cheng, M.P., Sheppard, D.C., Nguyen, D. (2016). Microbial biofilms in pulmonary and critical care diseases. Annals of the American Thoracic Society, 13(9), 1615-1623.

Bottagisio, M., Barbacini, P., Bidossi, A., Torretta, E., deLancey-Pulcini, E., Gelfi, C., Capitanio, D. (2020). Phenotypic Modulation of Biofilm Formation in a Staphylococcus epidermidis Orthopedic Clinical Isolate Grown Under Different Mechanical Stimuli, Contribution from a Combined Proteomic Study. Frontiers in microbiology, 11, 565914.

Brading, M., Jass, J., Lappin-Scott, H. (1995). Dynamics of Bacterial Biofilm Formation. In H. Lappin-Scott J. Costerton (Eds.), Microbial Biofilms (Biotechnology Research, pp. 46-63). Cambridge: Cambridge University Press.

Brook, C.E., Dobson, A.P. (2015). Bats as 'special' reservoirs for emerging zoonotic pathogens. Trends in microbiology, 23(3), 172-180.

Cellini, A. (2010). Role of reactive oxygen and nitrogen species in the response of Prunus spp. to bicarbonate (Doctoral dissertation, alma).

Cheung, G.Y., Rigby, K., Wang, R., Queck, S.Y., Braughton, K.R., Whitney, A.R., Otto, M. (2010). Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS pathogens, 6 (10). e1001133.

Chow, B.Y.L. (2014). Bioactive glass microspheres with controlled drug fluting capabilities for use in synthetic skin scaffolds (Master's thesis, University DE Rennes).

Clutterbuck, A.L., Woods, E.J., Knottenbelt, D.C., Clegg, P.D., Cochrane, C.A., Percival, S. L. (2007). Biofilms and their relevance to veterinary medicine. Veterinary microbiology, 121(1-2), 1-17.

Costa, E.M., Silva, S., Veiga, M., Tavaria, F.K., Pintado, M.M. (2018). Chitosan's biological activity upon skin-related microorganisms and its potential textile applications. World Journal of Microbiology and Biotechnology, 34 (7), 93.

Cywes-Bentley, C., Skurnik, D., Zaidi, T., Roux, D., De Oliveira, R.B., Garrett, W.S., Rey, A. (2013). Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proceedings of the National Academy of Sciences, 110 (24).

Darwin, M. (2011). Induction of Hypothermia in the Cryonics Patient, Theory and Technique, Part 2

Decho, A.W., Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in microbiology, 8, 922.

Delcaru, C., Alexandru, I., Podgoreanu, P., Grosu, M., Stavropoulos, E., Chifiriuc, M. C., Lazar, V. (2016). Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies. Pathogens (Basel, Switzerland), 5(4), 65.

di Biase, A., Kowalski, M.S., Devlin, T.R., Oleszkiewicz, J.A. (2019). Moving bed biofilm reactor technology in municipal wastewater treatment, A review. Journal of environmental management, 247, 849-866.

Wang, D., Wei, Y., Shi, L., Khan, M. Z., Fan, L., Wang, Y., Yu, Y. (2020). Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australasian journal of animal sciences, 33(2), 203-211.

Duffus, J., Templeton, D.M., Schwenk, M. (2017). Comprehensive glossary of terms used in toxicology, First edition: Royal Society of Chemistry.

Eftekhar, F., Mirmohamadi, Z. (2009). Evaluation of biofilm production by Staphylococcus epidermidis isolates from nosocomial infections and skin of healthy volunteers. International Journal of Medicine and Medical Sciences, 1(10), 438-441.

Emerenini, B.O., Hense, B.A., Kuttler, C., Eberl, H.J. (2015). A Mathematical Model of Quorum Sensing Induced Biofilm Detachment. PloS one, 10(7), e0132385.

Essa, R.H., Hussain, S.S., Tektook, N.K. (2015). Relationship between Ica gen and hemaaglutination in Staphylococcus epidermidis form biofilm. Journal of Genetic and Environmental Resources Conservation, 3(1), 74-83.

Esteban, J., Perez-Tanoira, R., Perez-Jorge-Peremarch, C., Gómez-Barrena, E. (2014). Bacterial adherence to biomaterials used in surgical procedures, In Microbiology for Surgical Infections, 41-57. Academic Press.

Fisher, R.A., Gollan, B., Helaine, S. (2017). Persistent bacterial infections and persister cells. Nature reviews. Microbiology, 15(8), 453-464.

Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature reviews. Microbiology, 14(9), 563-575.

Fontana, C., Favaro, M. (2018). Coagulase-positive and coagulase-negative staphylococci in human disease, In Pet-To-Man Travelling Staphylococci, First edition, 25-42. Academic Press.

Foster, T. J., Geoghegan, J.A., Ganesh, V.K., Hook, M. (2014). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature reviews. Microbiology, 12(1): 49-62.

Giupponi, E., Candiani, G. (2017). Interaction of polymeric biomaterials with bacteria (static). In Characterization of Polymeric Biomaterials, Elsevier, Woodhead Publishing. 317-337.

Golob, S. (2016). innovative antibacterial systems for orthopedic and traumatology applications.Medicine, Corpus ID: 80598043

Gomes, F., Teixeira, P., Oliveira, R. (2014). Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling, 30(2), 131-141.

Gonçalves, V.A.D.S. (2016). Survival of Staphylococcus epidermidis biofilm-released cells in human blood and plasma (Doctoral dissertation, Universidade do Minho).

Goneau, L.W. (2014). Sub-Inhibitory Antibiotics Enhance Virulence, Persistence, and Pathogenesis of Uropathogens. ASM journals mBio, 6(2), e00356-15.

Halebeedu, P.P., Kumar, G.S., Gopal, S. (2014). Revamping the role of biofilm regulating operons in device-associated Staphylococci and Pseudomonas aeruginosa. Indian J Med Microbiol., 32(2), 112-23.

Granslo, H.N. (2012). Staphylococcus epidermidis-virulence factors and innate immune response.

Green, C.S. (2010). Characterizing cell-cell and cell-surface interactions in the rhizobacterium Azospirillum brasilense. (Master thesis, University of Tennessee,Knoxville).

Grimaldi, A., Eguileor, M., Tettamanti, G., Valvassori, R., Baranzini, N., Bruno, D., Montali, A., Pulze, L. (2020). XXIst scientific meeting of the Italian Association of Developmental and Comparative Immunobiology (IADCI), 12-14 February 2020, Department of Biotechnology and Life sciences (DBSV), University of Insubria, Varese, Italy. ISJ-Invertebrate Survival Journal, 9-23.

Hago, Z.E.M. (2018). Antimicrobial Activity of Acacia Nilotica Bee Honey on Biofilms Forming Staphylococcus aureus isolated from Wound Swabs (Doctoral dissertation, Sudan University of Science & Technology).

Henderson, B., Poole, S., & Wilson, M. (1996). Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiological reviews, 60(2), 316-341.

Hu, X., Huang, Y.Y., Wang, Y., Wang, X., Hamblin, M.R. (2018). Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Frontiers in microbiology, 9, 1299.

Josse, J., Valour, F., Maali, Y., Diot, A., Batailler, C., Ferry, T., Laurent, F. (2019). Interaction Between Staphylococcal Biofilm and Bone: How Does the Presence of Biofilm Promote Prosthesis Loosening? Frontiers in microbiology, 10, 1602.

Jyoti, K., Malik, G., Chaudhary, M., Sharma, M., Goswami, M., Katare, O. P., Singh, S.B., Madan, J. (2020). Chitosan and phospholipid assisted topical fusidic acid drug delivery in burn wound: Strategies to conquer pharmaceutical and clinical challenges, opportunities and future panorama. International journal of biological macromolecules, 161, 325-335.

Kane, T.L. (2017). Examination of a New Virulence Factor in a Select Strain of Methicillin Resistant Staphylococcus Aureus (Doctoral dissertation, University of Notre Dame).

Kane, T.L., Carothers, K.E., Lee, S.W. (2018). Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Current drug targets, 19(2),111-127.

Kaplan, J.B. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of dental research, 89(3), 205-218.

Karimi, A., Karig, D., Kumar, A., Ardekani, A.M. (2015). Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab on a chip, 15(1), 23-42.

Khan, F., Pham, D., Oloketuyi, S.F., Kim, Y.M. (2020). Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Current pharmaceutical biotechnology, 21(4), 270-286.

Kirmusaoglu, S. (2016). Staphylococcal biofilms, Pathogenicity, mechanism and regulation of biofilm formation by quorum sensing system and antibiotic resistance mechanisms of biofilm embedded microorganisms. Microbial Biofilms-Importance and Applications, Edited volume, Dhanasekaran D, Thajuddin N, editors. Intech, Croatia, 189-209.

Kucinskas, M. (2017). The effect of sub-inhibitory concentrations of antibiotics on the regulation of eDNA in Staphylococcal biofilms. (Master thesis, Western Sydney University)

Kumar, V., Sachan, T.K., Gupta, U.D. (2017). Emerging Concept and Technology on Mycobacterial Biofilm. GSL Journal of Clinical Pathology, 1(1).

Kuwahara, K., Kitazawa, T., Kitagaki, H., Tsukamoto, T., & Kikuchi, M. (2005). Nadifloxacin, an antiacne quinolone antimicrobial, inhibits the production of proinflammatory cytokines by human peripheral blood mononuclear cells and normal human keratinocytes. Journal of dermatological science, 38(1), 47-55.

Land W.G. (2018). Innate Immune Recognition Molecules. In: Damage-Associated Molecular Patterns in Human Diseases. Springer, Cham.

Le, K., Otto, M. (2015). Quorum-sensing regulation in staphylococci-an overview. Frontiers in microbiology, 6, 1174.

Levipan, H.A., Tapia-Cammas, D., Molina, V., Irgang, R., Toranzo, A.E., Magarinos, B., Avendano-Herrera, R. (2019). Biofilm development and cell viability, An undervalued mechanism in the persistence of the fish pathogen Tenacibaculum maritimum. Aquaculture, 511, 734267.

Li, X., Wu, B., Chen, H., Nan, K., Jin, Y., Sun, L., Wang, B. (2018). Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. Journal of Materials Chemistry B, 6 (26), 4274-4292.

Liu, Y., Shi, L., Su, L., van der Mei, H.C., Jutte, P.C., Ren, Y., Busscher, H. J. (2019 a). Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 48(2), 428-446.

Liu, Y., Zhang, J., Wang, S., Guo, Y., He, T., Zhou, R. (2019 b). A novel adjuvant "sublancin" enhances immune response in specific pathogen-free broiler chickens inoculated with Newcastle disease vaccine. Journal of immunology research, 2019, 1016567, 7 pages.

Lood, R., Waldetoft, K.W., Nordenfelt, P. (2015). Localization-triggered bacterial pathogenesis. Future microbiology, 10(10), 1659-1668.

Lyon, P. (2015). The cognitive cell, bacterial behavior reconsidered. Frontiers in microbiology, 6, 264.

Lyons, K. M. (2012). Microbial adhesion to maxillary obturator materials (Doctoral dissertation, University of Otago).

Magiri, R.B. (2019). Innate immune responses activated by the adjuvant poly [di (sodium carboxylatoethylphenoxy) phosphazene](pcep) in pigs (Doctoral dissertation, University of Saskatchewan).

Mahamuni-Badiger, P.P., Patil, P.M., Badiger, M.V., Patel, P.R., Thorat-Gadgil, B. S., Pandit, A., Bohara, R.A. (2020). Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Materials science & engineering. C, Materials for biological applications, 108, 110319.

Maier, B., Wong, G. (2015). How Bacteria Use Type IV Pili Machinery on Surfaces. Trends in microbiology, 23(12), 775-788.

Mak, T.W., Saunders, M.E., Jett, B.D. (2013). Primer to the immune response. First edition, Academic Cell.

Marroquin, S., Gimza, B., Tomlinson, B., Stein, M., Frey, A., Keogh, R.A., Zapf, R., Todd, D.A., Cech, N.B., Carroll, R. K., Shaw, L.N. (2019). MroQ Is a Novel Abi-Domain Protein That Influences Virulence Gene Expression in Staphylococcus aureus via Modulation of Agr Activity. Infection and immunity, 87(5), e00002-19.

Matthews, K. R., Kniel, K. E., & Montville, T. J. (2019). Food microbiology, an introduction. Fourth edition, John Wiley & Sons.

McCall, A.D., Pathirana, R.U., Prabhakar, A., Cullen, P.J., Edgerton, M. (2019). Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. npj Biofilms and Microbiomes, 5(21).

Mehlin, C., Headley, C.M., Klebanoff, S.J. (1999). An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. The Journal of experimental medicine, 189(6), 907-918.

de Castro Melo, P., Ferreira, L. M., Filho, A. N., Zafalon, L. F., Vicente, H. I., & de Souza, V. (2013). Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], 44(1), 119 - 124.

Miyoshi, Y., Okada, S., Uchimura, T., Satoh, E. (2006). A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Bioscience, biotechnology, and biochemistry, 70(7), 1622 - 1628.

Mohapatra, S.S., Frisina, R.D., Mohapatra, S., Singh, M., Phan, M.H. (2020). Proceedings of the 2019 Nano Florida International Conference Held at the University of South Florida, Tampa, FL. Appl. Sci., 10(14), 4851.

Molina, P.E., Happel, K.I., Zhang, P., Kolls, J.K., Nelson, S. (2010). Focus on: Alcohol and the immune system. Alcohol research & health: the journal of the National Institute on Alcohol Abuse and Alcoholism, 33(1-2), 97-108.

Moriarty T. F., Poulsson A. H. C., Rochford E. T. J., Richards R. G. (2011). 4.407 - bacterial adhesion and biomaterial surfaces A2 in Comprehensive Biomaterials, ed Ducheyne P. (Oxford: Elsevier;), 75-100.

Moser, C., Pedersen, H. T., Lerche, C. J., Kolpen, M., Line, L., Thomsen, K., Høiby, N., & Jensen, P. O. (2017). Biofilms and host response - helpful or harmful. APMIS, 125(4), 320-338.

Okshevsky, M., Meyer, R.L. (2015). The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Critical reviews in microbiology, 41(3), 341-352.

Oliveira, D., Borges, A., Simoes, M. (2018). Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins, 10(6), 252.

Ong, T.H., Chitra, E., Ramamurthy, S., Ling, C., Ambu, S.P., Davamani, F. (2019). Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PloS one, 14(2), e0213079.

Otto, M. (2009). Staphylococcus epidermidis-the 'accidental' pathogen. Nature reviews. Microbiology, 7(8), 555-567.

Otto M. (2014). Staphylococcus epidermidis pathogenesis. Methods in molecular biology (Clifton, N.J.), 1106, 17-31.

Otto, M. (2018). Staphylococcal Biofilms. Microbiology spectrum, 6(4), 10.1128/microbiolspec.GPP3-0023-2018.

Parham, P. (2014). The immune system. Garland Science. Fourth edition, Taylor & Francis Group, LLC, New York, NY.

Perez-Velazquez, J., Golgeli, M., Garcia-Contreras, R. (2016). Mathematical Modelling of Bacterial Quorum Sensing: A Review. Bulletin of mathematical biology, 78(8), 1585-1639.

Petrova, O.E., Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current opinion in microbiology, 30, 67-78.

Cerca, N., Jefferson, K.K., Oliveira, R., Pier, G.B., Azeredo, J. (2006). Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infection and immunity, 74(8), 4849-4855.

Priyanka, S. (2014). Comparison of biofilm production in methicillin resistant Staphylococcus aureus and methicillin sensitive Staphylococcus aureus as a marker of virulence along with their antibiogram in clinical isolates at ESI-PGIMSR, Rajajinagar, Bangalore (Doctoral dissertation).

Pruneau, M. (2008). Etude transcriptomique de Staphylococcus aureus resistant a la methicilline (SARM) (Doctoral dissertation, Universite de Sherbrooke).

Rao, T.S. (2020). Bacterial Biofilms and Implant Infections, A Perspective. Arch Orthop., 1(4), 98-105.

Reddy, L.V., Wee, Y.J., Reddy, L.P.A., Bramhachari, P.V. (2019). Bacterial quorum sensing, challenges and prospects in food microbiology. In implication of quorum sensing and biofilm formation in medicine, agriculture and food industry (pp. 221-249). Springer, Singapore.

Rohde, H., Frankenberger, S., Zahringer, U., Mack, D. (2010). Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. European Journal of Cell Biology, 89(1), 103-111.

Rowson, C., Townsend, R. (2016). Biofilms, prevention and treatment. British Journal of Hospital Medicine, 77(12), 699-703.

Sabate Bresco, M., Harris, L.G., Thompson, K., Stanic, B., Morgenstern, M., O'Mahony, L., Richards, R. G., Moriarty, T.F. (2017). Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Frontiers in microbiology, 8, 1401.

Sauer, K., Rickard, A.H., Davies, D.G. (2007). Biofilms and biocomplexity. Microbe-American Society for Microbiology, 2(7), 347.

Sause, W.E., Buckley, P.T., Strohl, W.R., Lynch, A.S., Torres, V.J. (2016). Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends in pharmacological sciences, 37(3), 231-241.

Senturk, S., Ulusoy, S., Bosgelmez-Tinaz, G., Yagci, A. (2012). Quorum sensing and virulence of Pseudomonas aeruginosa during urinary tract infections. Journal of infection in developing countries, 6(6), 501-507.

Shahrooei, M., Hira, V., Khodaparast, L., Khodaparast, L., Stijlemans, B., Kucharikova, S., Burghout, P., Hermans, P.W., Van Eldere, J. (2012). Vaccination with SesC decreases Staphylococcus epidermidis biofilm formation. Infection and immunity, 80(10), 3660-3668.

Silva-Santana, G., Castro, H., Ferreira, B.L. Alves, F.A. (2015). Research Paper Staphylococcus aureus Biofilm development: The urgent need for treatment alternatives. Journal of Global Biosciences, 4(5), 2092-2107.

Singh, S., Singh, S.K., Chowdhury, I., Singh, R. (2017). Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. The open microbiology journal, 11, 53-62.

Skariyachan, S., Sridhar, V.S., Packirisamy, S., Kumargowda, S.T., Challapilli, S.B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia microbiologica, 63(4), 413-432.

Skurnik, D., Cywes-Bentley, C., Pier, G.B. (2016). The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert review of vaccines, 15(8), 1041-1053.

Smith, M.E. (2016). Endotoxin-induced inflammation in healthy human airways. (Doctoral dissertation University of Gothenburg, Sahlgrenska Academy).

Somerville, G.A., Proctor, R.A. (2009). The Biology of Staphylococci, Kent, B. Crossley, M.D., Kimberly, K., Jefferson, P.H.D., Gordon, L., Archer, M.D., (2009) Staphylococci in Human Disease. Second Edition, P.1-18, Blackwell Publishing Ltd.

Sparling, B.A. (2013). Total Synthesis of Hyperforin. (Doctoral dissertation) Harvard University.

Speziale, P., Pietrocola, G., Foster, T.J., Geoghegan, J.A. (2014). Protein-based biofilm matrices in Staphylococci. Frontiers in cellular and infection microbiology, 4, 171.

Subhi, H.T., Abdul, F.R. (2020). Activity of IgA Protease secretion by Proteus vulgaris From Urinary Tract Infection Patients. International Journal of Pharmaceutical Research,12(1), 275-281.

Surewaard, B.G.J. (2013). Immune evasion by Gram-positive pathogens. Utrecht University.

Tam, K., Torres, V.J. (2019). Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiology spectrum, 7(2),


Turkina, M.V., Vikstrom, E. (2019). Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. Journal of innate immunity, 11(3), 263-279.

Van Gestel, J., Vlamakis, H., Kolter, R. (2015). Division of Labor in Biofilms: the Ecology of Cell Differentiation. Microbiology spectrum, 3(2),26.

Van Houdt, R., Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of applied microbiology, 109(4), 1117-1131.

Vasudevan, R. (2014). Biofilms, microbial cities of scientific significance. J Microbiol Exp, 1(3), 84-98.

Veerachamy, S., Yarlagadda, T., Manivasagam, G., Yarlagadda, P.K. (2014). Bacterial adherence and biofilm formation on medical implants: a review. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 228(10), 1083-1099.

Verderosa, A.D., Totsika, M., Fairfull-Smith, K.E. (2019). Bacterial Biofilm Eradication Agents: A Current Review. Frontiers in chemistry, 7, 824.

Wh, H., Hatem, M.E., Elnwary, H.A., Sediek, S.H. (2016). Characterization of antimicrobial resistant bacterial pathogens recovered from cases of bovine mastitis with special reference to Staphylococcus aureus. Journal of Veterinary Medical Research, 23(1), 15-25.

Xu, L.C., Siedlecki, C.A. (2014). Bacterial adhesion and interaction with biomaterial surfaces. Biointerfaces, Where Material Meets Biology, (10), 365.

Zecconi, A., Scali, F. (2013). Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunology letters, 150(1-2), 12-22.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 Array