Phenotypic, Molecular Identification and Virulence Assessment of Cronobacter spp Isolated from Clinical Samples of Children Under Two Years in Mosul City/Iraq
PDF

Keywords

Cronobacter spp
Virulence factors
Molecular Identification

How to Cite

Alumary, M., & Almola, S. (2024). Phenotypic, Molecular Identification and Virulence Assessment of Cronobacter spp Isolated from Clinical Samples of Children Under Two Years in Mosul City/Iraq. Journal of Life and Bio Sciences Research , 5(02), 42 - 47. https://doi.org/10.38094/jlbsr502119

Abstract

Cronobacter spp. is known to be a foodborne causative agent for a variety of diseases in both humans and animals. This study focused on isolating Cronobacter species from 150 clinical samples of children under two years (60 from blood and stool samples, 30 from CSF samples) collected from Ibn al Atheer and Al Khanssa Hospitals. The phenotypic identification of bacterial isolates were performed through culture, microscopic, and biochemical examinations and vitek-2 system.  The results revealed a mixture of bacteria in 6.5% of the clinical specimens. The identity of isolates was 99% using the vitek-2 system for identifying Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter muytjensii, and Cronobacter pulveris.  Out of 150 specimens there were 8 (5.33 %) of specimens gave positive for Cronobacter spp which included: C. sakazaki 2/60 blood specimens (3.3%), C. sakazaki 2/60 stool specimens (3.3%), C. malonaticus 2/60 stool specimens (3.3%), 1/60 C. muytjensii and C. pulveris 1/60 (3.3%). The eight isolates phenotypically identified as Cronobacter were confirmed at the molecular level through 16S rRNA sequencing and submitted to NCBI under the accession numbers (OR825874, OR825875, PP126443, PP126444, PP126445, PP126455). The virulence profile of these isolates showed that 7/8 (87.5%) of Cronobacter strains exhibited haemolysin activity, 5/8 strains (62.5%) were able to produce the protease enzyme and 2/8 (25%) of Cronobacter strains were positive for lipase and lecithinase. All strains lacked the ability to produce a slime layer. The results also showed the ability of Cronobacter strains to produce biofilm by using the tube method and microtiter plate method but with different levels.

https://doi.org/10.38094/jlbsr502119
PDF

References

Abdulrazzaq, R., Faisal, R. (2022). Efficiency of hichrome Enterococcus faecium agar in the isolation of Enterococcus spp. and other associated bacterial genera from water. Journal of Life and Bio Sciences Research, 3(01), 01-06.

Al-Hilali, S.H., Al-Ani, S.A., Al-Kaabi, M.H. (2015). Biofilm formation by Cronobacter spp. isolated from clinical samples in Iraq. Journal of Medical Microbiology, 64(6), 661-667.

Almajed, F., Forsythe, S. (2016). Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microbial Pathogenesis, 90, 55-63.

Al-Saffar, S.E. (2022). Plasposon mutagenesis of genes involved in biofilm formation in Klebsiella pneumoniae isolated from UTI and water. Ph.D. Thesis, University of Mosul, Mosul, Iraq.

Alsonosi, A.M. (2017). Identification of physiological and virulence traits of clinical strains of Cronobacter malonaticus. A thesis submitted in partial fulfillment of the requirements of Nottingham Trent University for the degree of Doctor of Philosoph.

Annous, B.A., Fratamico, P.M., Smith, J.L. (2009). Scientific status summary: Quorum sensing in biofilms: Why bacteria behave the way they do. Journal of Food Science, 74(1), 24-37.

Cappuccino, J.G., Welsh, C. (2018). Microbiology: A Laboratory Manual (12th ed.). Pearson.

Christensen, G.D., Simpson, W.A, Bison, A.L., Beachy, H. (1982). Adherence of slime– producing strains of Staphylococcus epidermidis to smooth surfaces. J. Infect. Immune., (37), 317–26.

Faiz, S., Nasreen, Z., Sha, A., Naz, S. (2021). 18. Isolation, screening and characterization of lipase from bacterial isolates and its application in detergents and oily waste water degradation. Pure and Applied Biology, 10(1), 209-224.

FAO/WHO. (2008). Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae: Meeting report, MRA series 15. Rome, Italy: Food and Agriculture Organization/World Health Organization.

FAO/WHO. Enterobacter sakazakii and Salmonella in Powdered Infant Formula (Meeting Report). Microbiological Risk Assessment Series 10. Rome: Food and Agriculture Organization of the United Nations/World Health Organization, 2006.

Fiore, A., Casale, M., Aureli, P. (2008). Enterobacter sakazakii: epidemiology, clinical presentation, prevention and control. Ann Ist Super Sanità, 44(3), 275-280.

Forsythe, S.J. (2018). Updates on the Cronobacter genus. Annual Review of Food Science and Technology, 9(1), 23-44.

Friedemann, M. (2007). Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol., 116(1), 1–10.

Goebel, W., Chakraborty, T., Kreft, J. (1988). Bacterial haemolysins as virulence factors. Antonie Van Leeuwenhoek, 54(5), 453-63.

Healy, B.S. Cooney; S. O’Brien; C. Iversen, P.Whyte; J.Nally; J. Callanan and S. Fanning Cronobacter (Enterobacter sakazakii): An Opportunistic Foodborne Pathogen. Food borne Pathol. Dis., 2010, (7), (4).

Henry, M. and Fouladkhah, A. (2019). Outbreak history, biofilm formation, and preventive measures for control of Cronobacter sakazakii in infant formula and infant care settings. Microorganisms, 7(3), 77.

Hunter, C. J., and J. F. Bean. (2013). Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J Perinatol., V (33), 581–585.

ICMSF. (International Commission on Microbiological Specifications for Foods). (2002) Microbiological testing in food safetyman- agement, vol 7. Kluwer Academic/Plenum Publishers, New York.

Iversen, C., Lehner, A., Mullane, N., Bidlas, E., Cleenwerck, I., Marugg, J., Fanning, S., Stephan, R. and Joosten, H. (2007). The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evolutionary Biology, 7(1), pp.64-74.

Iversen, C., Waddington, M., Farmer, J. and Forsythe, S. (2006). The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiology, 26(6), pp.94-100.

Joseph, S., Cetinkaya, E., Drahovska, H., Levican, A. and Figueras, M. J. (2011). Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. International Journal of Systematic of Evolutionary Microbiology. 62:1277–83.

Joseph, S., Desai, P., Ji, Y., Cummings, C., Shih, R., Degoricija, L., Rico, A., Brzoska, P., Hamby, S., Masood, N., Hariri, S., Sonbol, H., Chuzhanova, N., McClelland, M., Furtado, M. and Forsythe, S. (2012). Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS One, 7(11), p. e49455-e49467.

Khaleel, A. M., Faisal, R. M., and Altaii, H. A. (2023). The efficiency of molecular methods compared to traditional methods in identifying bacteria from blood and cerebrospinal fluid samples. Malaysian Journal of Microbiology, 19(2).

Kim, K. S., Jang, S., Kim, S. K., Park, J. H., Heu, S. and Rye, M. (2008). Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. International Journal of Food Microbiology, 122(2), 196-203.

Lai, K. K. (2001). Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine (Baltimore) 80:113–122.

Liu, H., Cui, J. H., Cui, Z. G., Hu, G. C., Yang, Y. L., Li, J. and Shi, Y. W. (2013). Cronobacter carriage in neonate and adult intestinal tracts. Biomedical Environmental Sciences, 26:861–864.

Mahdi, Z. M., Al-Khafaji, J. K. and Al-Saffar, M. T. (2016). Enzymatic activity of Cronobacter isolates from clinical samples in Iraq. Iraqi Journal of Science, 57(3), 1451-1460.

Mahindroo, J., Shyam, I., Mohan, B., Thakur, S., Taneja, N. (2016). Cronobacter sakazakii-An unrecognised food borne pathogen, India. International Journal of Infectious Diseases, 45(1), 182.

Mittal, R., Wang, Y., Hunter, C. J., Gonzalez-Gomez, I. and Prasadarao, N. V. (2009). Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: A role for outer membrane protein A. Laboratory Investigation, 89(3), 263-277.

Mullane, N. R., O’Gaora, P., Nally, J. E., Iversen, C., Whyte, P., Wall, P. G. and Fanning, S. (2008). Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Applied and Environmental Microbiology, 74(12), 3783-3794.

Pagotto, F. J. and Abdesselam, K. (2012). Cronobacter species. Food Microbiology: Fundamentals and Frontiers, 311-337.

Pagotto, F., Nazarowec-White, M., Bidawid, S. and Farber, J. (2003). Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. Journal of Food Protection, 66(3), pp.370-375.

Patrick, M. E., Mahon, B. E., Greene, S. A., Rounds, J., Cronquist, A., Wymore, K., Boothe, E., Lathrop, S., Palmer, A. and Bowen, A. (2014). Incidence of Cronobacter spp. infections, United States, 2003-2009. Emerging Infectious Diseases, 20, 1536–1539.

See, K., Then, H. and Tang, T. (2007). Enterobacter sakazakii bacteraemia with multiple splenic abscesses in a 75-year-old woman: a case report. Age and Ageing, 36(5), pp.595-596.

Smith, J. and Brown, A. (2023). Molecular assays for identifying Cronobacter species. Journal of Microbiological Methods, 145(2), 123-134. https://doi.org/10.1016/j.jmoldx.2023.03.001.

Teramoto, S., Tanabe, Y., Okano, E., Nagashima, T., Kobayashi, M. and Etoh, Y. (2010). A first fatal neonatal case of Enterobacter sakazakii infection in Japan. Paediatrics International, 52(2), pp.312-313.

Thomas, R., Hamat, R. A., and Neela, V. (2014). Extracellular enzyme profiling of Stenotrophomonas maltophilia clinical isolates. Virulence, 5(2), 326-330.

Urmenyi, A. and Franklin, W. A. (1961). Neonatal death from pigmented coliform infection. The Lancet, 277(7172), pp.313-315.

World Health Organization (WHO). (2008). Microbiological hazards in food and water: Assessing the microbiological safety of drinking-water (FAO/WHO Technical Report). Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO).

Zogay, X., Bokranz, W., Nimtz, M. and Romlind, U. (2003). Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infection and Immunity, 71(7), 4151-4158.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Array