

Phenotypic and Genotypic Assessment of Virulence Potential of Multidrug-Resistant *Klebsiella pneumoniae* Isolated from Wounds in Port Harcourt, Nigeria

Patience Worlu Dim, Chinonye Kemuel Nyema*, Ejiro Obakpororo Agbagwa, Kome Otokunefor

Department of Microbiology, University of Port Harcourt, Rivers State, Nigeria

patience_dim@uniport.edu.ng, Chinonye.nyema@uniport.edu.ng, obakpororo.agbagwa@uniport.edu.ng,
kome.otokunefor@uniport.edu.ng

*Correspondence: Chinonye.nyema@uniport.edu.ng

Abstract

Klebsiella pneumoniae is one of the predominant pathogens found in wounds. Multidrug resistant *K. pneumoniae* poses a challenge to treatment due to complications that may arise. The presence of virulent determinants would pose a further public health risk. This study aimed to assess the phenotypic and genotypic virulence potential of multidrug-resistant *K. pneumoniae* isolated from wounds in Port Harcourt, Nigeria. A total of 200 wound samples were obtained and evaluated for the presence of *K. pneumoniae* using standard microbiological culture techniques and appropriate biochemical tests. Test isolates were assessed for antimicrobial susceptibility and multidrug resistant isolates were identified. Three virulence traits (hemolytic activity, biofilm formation potential and protease production) were determined using standard methods. DNA of test isolates was extracted using the boiling method, and isolates were assessed for the presence of three virulence genes (*entB*, *mrkD*, and *fimH* genes). Out of 30 *K. pneumoniae* isolates identified and evaluated, 60% were multidrug resistant, 70% (30% beta hemolysis and 40% alpha hemolysis) showed hemolytic activity, 7 isolates (23.3%) were positive for protease production, and 11 (36.7%) exhibiting biofilm forming potential. This study also revealed the presence of the *entB* gene (13.3% occurrence) and the *mrkD* gene (6.7% occurrence), with a co-occurrence of the *entB* and *mrkD* genes in one isolate. The *fimH* gene was not detected in any of the isolates assessed. This study notes a higher occurrence of virulence traits in multidrug resistant (MDR) isolates than in non-MDR isolates.

Keywords: *Klebsiella pneumoniae*, Wounds, Resistance gene, Virulence, Nigeria

Received: November 02nd, 2025 / Revised: December 12th, 2025/ Accepted: December 20th, 2025 / Online: December 23rd, 2025.

I. INTRODUCTION

Several diseases, including wound, bloodstream, and lung infections, can be caused by the commonly encountered Gram-negative bacteria *Klebsiella pneumoniae*. Multidrug-resistant *K. pneumoniae* wound infections are especially dangerous because they can be challenging to treat and result in life-threatening consequences (Agbagwa and Edje, 2015). Drug-resistant *K. pneumoniae* strains are becoming more common, which has sparked worries throughout the globe as it limits available treatment options and poses a major risk to public health (Zhu *et al.*, 2021). In addition to showing increased virulence and resistance to several medications, multidrug-resistant (MDR) *K. pneumoniae* strains often exhibit increased mortality rates and more severe illnesses (Ehwuru *et al.*, 2019).

In wounds, especially, the development of infections associated with multidrug resistant organisms has been especially problematic (Prastiyanto *et al.*, 2024). Several studies have reported on the presence of drug resistant *K. pneumoniae* in wounds globally, with *K. pneumoniae* often occurring as one of the first two most commonly occurring Gram negative organisms after *Escherichia coli* (Yang *et al.*, 2021; Chukwu *et al.*, 2022; Prastiyanto *et al.*, 2024). Similar reports have been made of *K. pneumoniae* from wounds in Nigeria (Pandukur *et al.*, 2020; Akinyemi *et al.*, 2021; Ajigbewu *et al.*, 2025). One study noted the presence of *K. pneumoniae* as a major risk factor for complications (Yang *et al.*, 2021).

This risk from *K. pneumoniae* can be further compounded by the presence of virulence factors in these isolates, with the potential to cause more severe disease conditions. A number of studies from Nigeria explored virulence factors in *K.*

pneumoniae as well. However, for some of these studies, isolates were not specifically from wounds and only genotypic methods were used (Ogbolu *et al.*, 2022, Akintoyese *et al.*, 2025). One study was noted to also carry out phenotypic detection of virulence characteristics (Dada-Adegbola and Abitogun, 2021). None of these studies, however were carried out in the South-South region of Nigeria. This study, therefore, set out to carry out a phenotypic and genotypic assessment of the virulence potential of multidrug-resistant *K. pneumoniae* isolated from wounds in Port Harcourt, Nigeria.

II. MATERIALS AND METHODS

A. Sample collection and processing

Two hundred wound samples were taken from the wounds of patients from the University of Port Harcourt Teaching Hospital (UPTH). Samples were immediately transported to the laboratory and processed by culturing on the selective Eosin Methylene Blue agar. Following incubation at 37°C for 24 hours, characteristic *K. pneumoniae* colonies were purified by subculturing to Nutrient agar and isolate identities confirmed using biochemical tests such as Catalase, Citrate, Oxidase, Methyl- Red, Voges Proskauer, Urease, Motility, Triple sugar iron test, Starch hydrolysis, Sugar Fermentation (Glucose, Lactose, Sucrose), and indole.

B. Antimicrobial susceptibility test

Antibiotic sensitivity testing measures a bacteria's resistance to antibiotics. A test for antibiotic sensitivity was conducted on Mueller-Hinton agar (MHA) using the following antibiotic discs: Gentamicin (GEN) 10µg, Ampicillin-Cloxacillin (AX) 10µg, Cefuroxime (CXM) 30µg, Nalidixic acid (NA) 30µg, Nitrofurantoin (NIT) 300µg, Ceftriaxone (CRO) 10µg, Ofloxacin (OFX) 5µg, Imipenem (IPM) 10µg, Amoxicillin/clavulanate (AUG) 30µg, Levofloxacin (LEV) 5µg, vancomycin (VAN) 5µg and Cefotaxime (CTX) 30µg. Antimicrobial susceptibility testing was carried out as previously described using the Kirby Bauer disc diffusion method. In brief, this involved inoculating a bacterial suspension corresponding to a 0.5 McFarland standard onto the surface of a Mueller-Hinton Agar (MHA). This was followed by aseptically placing a bacterial multidisc onto the surface of the inoculated plate. Following a 10-minute pre-incubation, the whole setup was incubated at 37°C. After a 24-hour time frame, plates were examined for zones of

inhibition, indicated as clear areas around the antibiotic disc. These were recorded and results interpreted using the Clinical Laboratory Standard Institute guidelines (CLSI, 2014).

C. Phenotypic Detection of selected virulence traits

The presence of three virulence traits in identified isolates was then determined using previously described methods. In brief, biofilm forming potential was determined using both the Congo Red Agar (CRA) method (Taher *et al.*, 2016) and the Tube method (TM). The CRA method involved culturing a pure inoculum on the Congo red agar, where organisms with biofilm forming potential produced colonies with black pigmentation. For the tube method (Alghofaili, 2022), biofilm lined on the bottom and wall of the tube was detected. Hemolysis was detected by inoculation to blood agar containing 5% sheep blood (Buxton, 2005), while the protease production was determined by inoculation to Skim milk agar where a positive result was observed as a clear zone surrounding the growth of the organism (Baron and Finegold, 1994; Taher *et al.*, 2016).

D. Molecular detection of virulence genes in test isolates

Following DNA extraction using the boiling method as previously described (Otokunefor *et al.*, 2019), the presence of three virulence genes (*entB*, *mrkD*, and *fimH* genes) was assayed using previously described primers and protocols (Table 1). Each PCR reaction mixture consists of a 10µl reaction volume made up of 2µl genomic DNA, 0.3µl forward primer, 0.3µl reverse primer, 5.4µl double distilled water, and 2µl FIREpol master mix (solis biodyne) containing 7.5mM MgCl₂, 1mM dNTPs, blue dye, yellow dye and 5x reaction buffer containing 0.4M Tris-HCL.

A two percent (2%) agarose gel was used for the electrophoresis. 0.8 gram (0.8g) of agarose powder (CSL-AG100 LE multi-purpose agarose) was dissolved in 40 ml of 1X TAE (TRIS acetate EDTA). The solution was then stained with 9µL ethidium bromide and was allowed to polymerize in the gel electrophoretic cast in which the comb was properly placed. The TAE running buffer was poured into the electrophoresis tank to submerge the polymerized gel. The amplified PCR product of each sample was resolved in the 2% agarose gel at 80v, 250mA for 15 minutes, 4 µL of the products were carefully loaded in the wells, using 100bp molecular weight marker as a control for size. Resolved allelic fragments were visualized using a UV transilluminator.

Table 1. Primers used for genotypic detection of virulence genes in test isolates

Gene of interest	Sequences of primer (5'-3')	Size amplicon (bp)	Annealing temperature °C	References
<i>mrkD</i>	CGCTTTTATCGTCTTAATG GTGATGTAGCGGGTCTCCT	55	880	Ballén <i>et al.</i> , 2021
<i>entB</i>	ATTCCTCAACTCTGGGGC AGCATCGGTGGCGGTGGTCA	60	371	Candan & Aksöz, 2015
<i>fimH</i>	GAAAAAAATAATCCCCCTGTTCA C GTAACCTGGCCTGTGGT	57	850	Ballén <i>et al.</i> , 2021

III. RESULTS

A. Biochemical characterization of suspected *Klebsiella* from various wound sources

Following biochemical characterization of suspected *Klebsiella* sp., the majority (51.9%, 40/77) were confirmed as *K. pneumoniae*.

B. Percentage occurrence of resistance in *K. pneumoniae* test isolates

The test isolates showed varying levels of resistance to the antibiotics used (Figure 1). The highest level of resistance (42.5%) was against ceftriaxone (CRO) and the lowest (15%) against ampicillin-cloxacillin (AX) and nitrofurantoin (NIT).

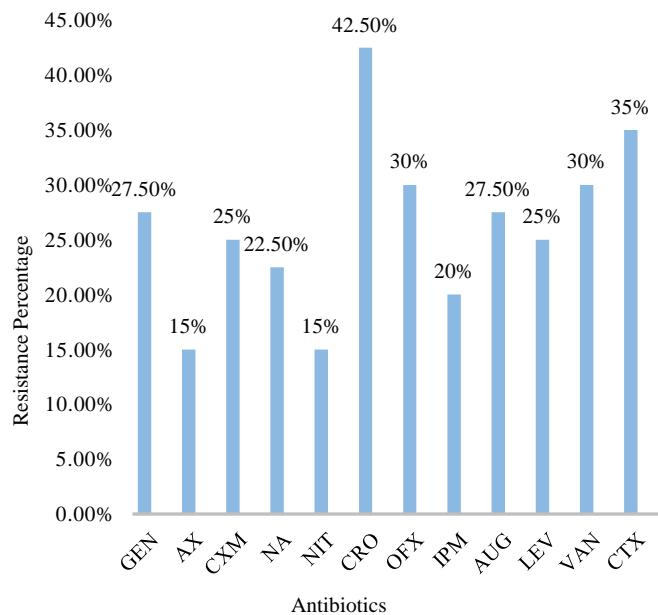


Figure 1: Occurrence distribution of antibiotic resistance in test isolates

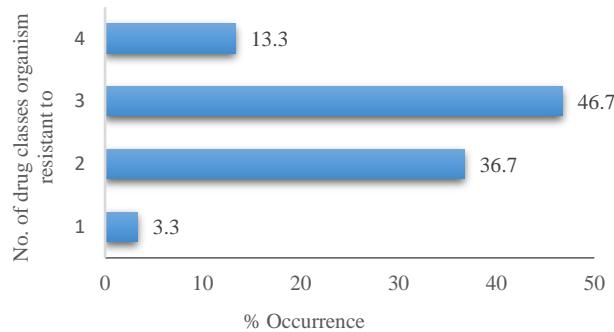


Figure 2. Variation of multidrug and classes

All *K. pneumoniae* isolates were found to exhibit unique antibiogram patterns (Table 2) resulting in 30 patterns in total. The lowest proportion of isolates showed resistance to only 1 drug class (Figure 2). Majority of isolates (60%, 18/30) were found to be multidrug resistant (resistant to 3 or more drug

classes), though most of these showed resistance to only 3 drug classes.

Table 2. Antibiogram pattern of antibiotic resistance *Klebsiella pneumoniae* isolates

S/No	Antibiogram	No. of Isolates	No of drug classes	Multidrug
1	AUG-GEN	1	2	-
2	CRO-CTX	1	1	-
3	CRO-NIT	1	2	-
4	CTX-LEV	1	2	-
5	NIT-OFX	1	2	-
6	ACX-LEV-NIT	1	3	+
7	AUG-CRO-LEV	1	3	+
8	AUG-CRO-OFX	1	3	+
9	AUG-CTX-IPM	1	3	+
10	AUG-CTX-OFX	1	3	+
11	CRO-CTX-GEN	1	2	-
12	CRO-CTX-LEV	1	2	-
13	CRO-CTX-IPM	1	2	-
14	CRO-CXM-OFX	1	2	-
15	CRO-LEV-NA	1	2	-
16	CTX-CXM-GEN	1	2	-
17	CTX-LEV-OFX	1	2	-
18	ACX- CTX-1PM-NIT	1	3	+
19	ACX-AUG-CTX-NA	1	3	+
20	ACX-CRO-CXM-OFX	1	3	+
21	ACX-GEN-IPM-NA	1	4	+
22	AUG-CRO-GEN-IPM	1	4	+
23	AUG-GEN-IPM-LEV	1	4	+
24	CRO-CXM-NA-NIT	1	3	+
25	CRO-GEN-NA-OFX	1	3	+
26	CRO-CTX-GEN-NA	1	3	+
27	CTX-CXM-IPM-OFX	1	3	+
28	CRO-CXM-GEN-NA-LEV	1	3	+
29	CXM-LEV-NA-NIT-OFX	1	3	+
30	CTX-CRO-CXM-GEN-NA-NIT	1	4	+

Out of 30 isolates assessed for hemolytic activity, 70% showed either alpha or beta hemolytic patterns (Figure 3), though partial hemolysis (alpha hemolytic pattern) was observed in the majority. Only 7 isolates (23.3%), however, were positive for protease production and 11 (36.7%) exhibiting biofilm forming potential by both Congo red agar and the tube method (Figures 4 and 5).

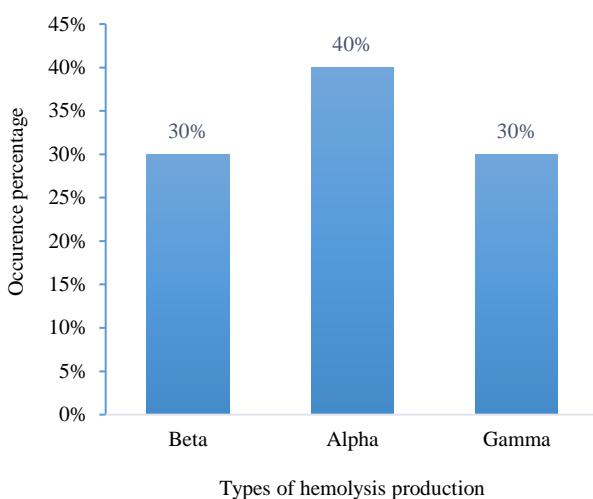
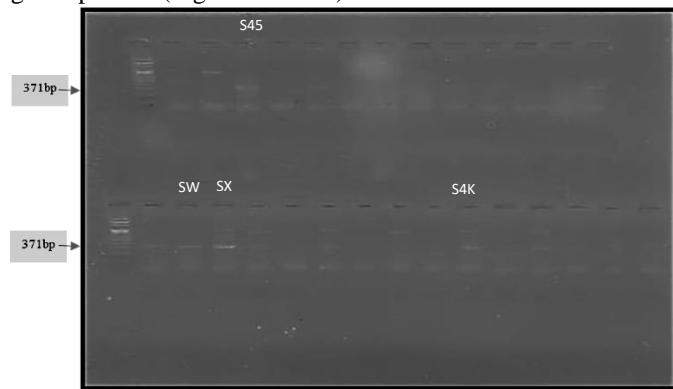


Figure 3. Hemolytic pattern distribution of test isolates

Figure 4. Congo red agar plate with biofilm formation

Figure 5. Tube method formation of biofilm (purple ring in tube indicated positive result)


C. Co-occurrence of virulence characteristics

A co-occurrence of virulence characteristics was observed in only 8 isolates, with all three virulence characteristics present only in a single isolate (S45). The majority of the 27 isolates (66.7%) exhibiting at least one virulence trait were also found

to be MDR, while only 33.3% of isolates showing no virulence trait were MDR. In general, only 11.1% of MDR isolates exhibited no virulence characteristics, while 33.3% of non-MDR isolates exhibited no virulence characteristics.

D. Molecular assessment of select virulence gene markers

The analysis for three select virulence gene markers showed that 16.7% of isolates had at least one of the genes present. For the *fimH* gene, however, a 0% occurrence was noted among the test isolates; the *entB* gene had a 13.3% occurrence, while the *mrkD* gene showed a 6.7% occurrence. One isolate (S45) had a co-occurrence of both *entB* and *mrkD* genes present (Figures 6 and 7).

Figure 6. *entB* DNA product (371 bp) from typical isolates of *K. pneumoniae*Figure 7. *mrkD* DNA product (880 bp) from typical isolates of *K. pneumoniae*

IV. DISCUSSION

Klebsiella pneumoniae is one of the most common bacteria associated with wound infections (Puca et al., 2021). In this study, a 20% occurrence (40 isolates) was identified as *K. pneumoniae* from 200 samples, which is quite similar to reports from previous studies. Prastiyananto and colleagues recently noted a 21.5% occurrence of *K. pneumoniae* in wound infections in Indonesian patients (Prastiyananto et al., 2024), while Doko et al. (2024) reported a 20.9% occurrence from wound surfaces. These were slightly different from the 11.1% occurrence observed by Ajigbewu and colleagues from chronic wounds in Nigeria fairly recently (Ajigbewu et al., 2025) and 28% occurrence reported from burn patients in

Pakistan (Qaisar *et al.*, 2023). A much lower occurrence of 6.7% was reported by Pandurkar and colleagues from diabetic wounds (Pandukur *et al.*, 2020).

In this study, resistance rates of the organisms ranged from 15% to 42.5%. A similar range was observed in a Pakistan study, which, though they noted rates ranging from 1.5% to 97.3%, reported the majority (16/18, 88.9%) below 50% (Prastiyanto *et al.*, 2024). It was, however, much lower than rates observed recently by Akintoyese and colleagues (Akintoyese *et al.*, 2025), who noted all rates above 80%. Doko *et al.* (2024) reported rates ranging from 0% to 90.7%, though the majority had rates less than 50%. All these variations might be a function of a number of factors such as isolate source, the nature of the wound, and the treatment history of the patient.

The fact that the highest rate of resistance was against ceftriaxone, a third-generation cephalosporin, is worrisome due to the extended spectrum of this class of antibiotics and their clinical efficacy especially against antibiotic-resistant Gram-negative bacteria (Hamadalneel *et al.*, 2024; Gebremeskel *et al.*, 2023; Fatima *et al.*, 2021). Even higher rates of above 80% have been recently reported (Mijović *et al.*, 2022; Nwafia *et al.*, 2019). A recent study actually noted the rising occurrence of resistance against third-generation cephalosporins, with rates evolving from 58.9% to 71.5% between 2020 and 2024 (Bwanali *et al.*, 2025). This highlights a need to advocate stewardship regarding third-generation cephalosporins specifically.

This study reported a high rate of multidrug resistance (60%), similar to reports by previous studies (Mike-Ogburia *et al.*, 2025; Ameshe *et al.*, 2022; Otokunefor *et al.*, 2018) showing MDR rates ranging from 90.2% to 70%. This high rate of resistance detected can be attributed to the overuse of antibiotics (Aktar *et al.*, 2014; Isaiah *et al.*, 2025). The high level of multidrug resistance in this study could be due to an interplay of other resistance mechanisms co-expressed by the isolates, such as extended spectrum beta lactamases and quinolone resistance genes. Furthermore, prior antibiotic use in hospitals or through auto-medication, overuse of antibiotics in livestock and fish farming, poor infection control in health care facilities, and poor hygiene and sanitation exacerbate multidrug resistance. In contrast to this study, the fact that resistance to three or more antibiotic classes was seen in over 90% of cases highlights the danger of multidrug-resistant *K. pneumoniae* in wound infections.

A study by Karimi *et al.* (2021) reported that 74.5% of *K. pneumoniae* isolates from clinical samples were positive for biofilm formation, while Nirwati *et al.* (2019) found that only 26.95% of *K. pneumoniae* isolates from respiratory tract infections showed strong biofilm formation using the Congo red agar method. Liu *et al.* (2024) noted that most infections are established by the presence of biofilms in the host. All of these indicate an effect of source on biofilm forming potential, which is probably reflected in the 37% occurrence of biofilm forming potential observed in this present study. Beta hemolysis (complete hemolysis) was observed in 30% (9) *K. pneumoniae* isolates, 40% (12) isolates were alpha

hemolytic (partial hemolysis), while 30% (9) isolates were non- hemolytic (gamma hemolysis). A study by Hullur *et al.* (2022) found that only 4.66% of *K. pneumoniae* isolates from different clinical samples were hemolytic, while Imtiaz *et al.* (2021) showed 8% hemolytic activity. The production of hemolysin among Gram-negative bacteria is indicative of other virulence and toxigenic factors (Hullur *et al.*, 2022). The assessment of bacterial hemolytic activity is a vital criterion in determining virulence, and it serves as a determinant of virulence in bacterial pathogenesis.

The genotypic assessment of virulence potential was performed by assessing the isolates for the presence of *entB*, *mrkD*, and *fimH* virulence genes. The *entB* gene product (371 bp) was amplified within S4K, S45, SW, and SX isolates (13.3%). This contrasted the findings of Soltan *et al.* (2018), which revealed that the *entB* gene was the most prevalent gene, 58 (95.1%), among 16 determined virulence genes, followed by *mrkD* 17 (27.9%) and *fimH* 11 (18%) genes.

The *fimH* gene encodes the FimH protein, a type 1 fimbriae adhesive subunit and has been widely detected in *K. pneumoniae* by a number of researchers with detection levels up to 96% (Stahlhut *et al.*, 2009; Schroll *et al.*, 2010; Ferreira *et al.*, 2019; Stahlhut *et al.*, 2010), Pourmohammad-Hosseini *et al.*, 2023; Swedan and Aldakhily, 2024; Abeni *et al.*, 2024). The source of these isolates varied, ranging from environmental isolates to human isolates such as liver isolates, urinary tract isolates, and bloodstream isolates. Unlike these previous studies, however, there was a 0% occurrence of the *fimH* gene in the present study. A similar result was noted recently in a study carried out in Osun State, Nigeria (Akintoyese *et al.*, 2025), which reported a 0% occurrence also of *fimH* in clinical isolates collected from a variety of clinical specimens. This indicates that biofilm formation in the isolates in this study was not *fimH* dependent.

The genetic factor known as *mrkD*, or multiple-resistance keeping determinant, is present in the *K. pneumoniae* genome and is responsible for the bacteria's resistance to several drugs. This study revealed the presence of *mrkD* in just two isolates, S45 and S61 (6.6%), which is relatively similar to the low rates reported by Wang *et al.* (2019) and Wasfi *et al.* (2012). Unlike other studies that amplified the *mrkD* gene in rates ranging from 65% to 96% (Akintoyese *et al.*, 2025; Swedan and Aldakhily, 2024; Ferreira *et al.*, 2019; Shakib *et al.*, 2018; Ali *et al.*, 2022), in *K. pneumoniae* isolates from samples of bloodstream infections and urinary tract infections.

V. CONCLUSION

This study provides a comprehensive report of virulence traits and antimicrobial resistance (AMR) in the test isolates and note a higher occurrence of virulence traits in multidrug resistant (MDR) isolates than in non-MDR isolates. The diversity of isolates as indicated by the variety of antibiograms could be indicative of a lack of spread of a single clone but rather represent multiple evolutions of AMR.

Additionally, this study provides crucial information on the occurrence of specific virulence genes.

REFERENCES

Abeni, B.A., Peterside, F.N., Otokunefor, K. (2024). Comparative analysis of virulence gene profiles of *Escherichia coli* from human and non-human sources in Rivers State, Nigeria. *Access Microbiology*, 6(7): 000776.v6.

Agbagwa, O.E., Edje, O. (2015). Methicillin Resistant *Staphylococcus aureus* in wound swabs of patients attending a public hospital in Warri Delta State, Nigeria. *British Microbiology Research Journal*, 11(3), 1-8.

Ajigbewu, O.H., Adeyemi, F.M., Wahab, A.A., Oyedara, O.O., Yusuf-Omoloye, N.A., Ajigbewu, F.A. (2025). Occurrence of extremely drug-resistant *Klebsiella* and multidrug-resistant *Enterobacter* species in chronic wound patients. *Microbes and Infectious Diseases*, 6(1), 342-354.

Akintoyese, T.O., Alao, J.O., Oladipo, E.K., Oyedemi, O.T., Oyawoye, O.M. (2025). Antimicrobial resistance and virulence in *Klebsiella pneumoniae*: a four-month study in Osogbo, Nigeria. *Antimicrobial Stewardship & Healthcare Epidemiology*, 5(1), e64.

Akinyemi, K.O., Abegunrin, R.O., Iwalokun, B.A., Fakorede, C.O., Makarewicz, O., Neubauer, H., Pletz, M.W., Wareth, G. (2021). The emergence of *Klebsiella pneumoniae* with reduced susceptibility against third generation cephalosporins and carbapenems in Lagos Hospitals, Nigeria. *Antibiotics (Basel)*, 10 (2), 142.

Aktar, J., Chowdhury, A.M., Forkan, M.A. (2014). Study on prevalence and antibiotic resistance pattern of *Klebsiella* isolated from clinical samples in South East Region of Bangladesh. *American Journal of Drug Discovery and Development*, 4, 73-79.

Alghofaili, F. (2022). Use of bacterial culture supernatants as anti-biofilm agents against *Pseudomonas aeruginosa* and *Klebsiella pneumoniae*. *European Review for Medical and Pharmacological Sciences*, 26(4), 1388-1397.

Ali, S., Alam, M., Hasan, G.M., Hassan, M.I. (2022). Potential therapeutic targets of *Klebsiella pneumoniae*: A multi-omics review perspective. *Briefly Functional Genome*, 21(2), 63-77.

Ameshe, A., Engda, T., Gizachew, M. (2022). Antimicrobial resistance patterns, extended-spectrum beta-lactamase production, and associated risk factors of *Klebsiella* species among UTI-suspected patients at Bahir Dar City, Northwest Ethiopia. *International Journal of Microbiology*, 8216545.

Ballén, V., Gabasa, Y., Ratia, C., Ortega, R., Tejero, M., Soto, S. (2021). Antibiotic resistance and virulence profiles of *Klebsiella pneumoniae* strains isolated from different clinical sources. *Frontier in Cellular and Infection Microbiology*, 11, 738223.

Baron, E.J., Finegold, S.M. (1994). *Baily and Scott Diagnostic Microbiology*, 8th edition. The C. V. Mosby Company.

Buxton, R. (2005). Blood Agar Plates and Hemolysis Protocols; *American Society for Microbiology*, 15, 1-9.

Bwanali, A.N., Lubanga, A.F., Kondowe, S., Nzima, E., Mwale, A., Kamanga, W., Enerico, C., Masautso, C., Kapatsa, T., Mudenda, S., Mpiganjira, S., Mwale, G., Chitule, C., Kawerama, A., Chibwe, I., Nyirenda, T., Mitambo, C. (2025). Trends and patterns of antimicrobial resistance among common pathogens isolated from adult bloodstream and urinary tract infections in public health facilities in Malawi, 2020-2024. *BMC Infectious Diseases*, 25(1), 946.

Candan, E.D., Aksöz, N. (2015). *Klebsiella pneumoniae*: characteristics of carbapenem resistance and virulence factors. *Actual Biochemical Polymerase*, 62(4), 867-874.

Chukwu, E.E., Awoderu, O.B., Enwuru, C.A., Afocha, E.E., Lawal, R.G., Ahmed, R.A., Olanrewaju, I., Onwuamah, C.K., Audu, R.A., Ogunsola, F.T. (2022). High prevalence of resistance to third-generation cephalosporins detected among clinical isolates from sentinel healthcare facilities in Lagos, Nigeria. *Antimicrobial Resistance & Infection Control*, 11(1), 134.

Clinical and Laboratory Standards Institute. (2014). *Performance standards for antimicrobial susceptibility testing*: Twenty-fourth informational supplement (CLSI document M100-S24) Wayne, 34(1).

Dada-Adegbola, H.O., Abitogun, F. (2021). Detection of DHA-1-Producing strains and other associated virulence factors of isolates of *Klebsiella pneumoniae* from a Nigerian Teaching Hospital. *African Journal of Biomedical Research*, 24, 371-380.

Doko, H.I., Enejiyon, S.O., Wuna, M.M., Adedeji, S.A., Sa'adu, M., Fasasi, R.A., Adabara, N.U. (2024). Molecular characterization of carbapenem resistant *Klebsiella pneumoniae* from wound surfaces of patients attending General Hospital Minna, Nigeria. *Fudma Journal of Sciences*, 8(3), 233 - 241.

Ehwuru, P. C., Kome, O., Tosanwunmi, O. (2019). Antibiotic susceptibility profile of Gram-Negative isolates from wound swabs. *Journal of Medical Laboratory Science*, 29(1), 37-44.

Fatima, S., Liaqat, F., Akbar, A., Sahfee, M., Samad, A., Anwar, M., Iqbal, S., Khan, S.A., Sadia, H., Makai, G., Bahadur, A., Naeem, W., Khan, A. (2021). Virulent and multidrug-resistant *Klebsiella pneumoniae* from clinical samples in Balochistan. *International Wound Journal*, 18(4), 510-518.

Ferreira, R.F., Brenda, C.M., Da Silva, Graziela, S., Rezende, Rafael, N.S., André, P., Campanini, E.B., Brito, M.C.A., Eulália, M.L.S., Freire, C.C.M., Anderson, F.C., Maria-Cristina, P.S. (2019). High prevalence of multidrug-resistant *Klebsiella pneumoniae* harboring several virulence and β -Lactamase encoding genes in a Brazilian Intensive Care Unit. *Frontiers in microbiology*, 9, 3198.

Gebremeskel, L., Teklu, T., Kasahun, G.G., Tuem, K.B. (2023). Antimicrobial resistance pattern of *Klebsiella* isolated from various clinical samples in Ethiopia: a systematic review and meta-analysis. *BMC Infectious Diseases*, 23(1), 643.

Hamadalneel, Y.B., Alamin, M.F., Attaalla, A.M. (2024). A Four-Year trend of ceftriaxone resistance and associated risk factors among different clinical samples in Wad Medani, Sudan: A Cross-sectional retrospective study. *Cureus*, 16 (7), e64184.

Hullur, M.S., Natarajan, A., Sreeramulu, P.N. (2022). Phenotypic characterization of virulence factors and antibiogram of *Klebsiella pneumoniae* Isolates from various clinical Samples – A cross sectional study. *Journal of Pure and Applied Microbiology*, 16(3), 1783-1791.

Imtiaz, W., Syed, Z., Rafaqe, Z., Andrews, S.C., Dasti, J.I. (2021). Analysis of antibiotic resistance and virulence traits (genetic and phenotypic) in *Klebsiella pneumoniae* clinical isolates from Pakistan: Identification of significant levels of Carbapenem and Colistin resistance. *Infection and Drug Resistance*, 14, 227-236.

Isaiah, O., Otokunefor, K., Agbagwa, O.E. (2025). Multiple antibiotic resistance indexing and molecular identification of *Escherichia coli* isolated from clinical and nonclinical sources in Port Harcourt Metropolis, Nigeria. *Pan African Medical Journal*, 51(11).

Karimi, K., Zarei, O., Sedighi, P., Taheri, M., Doosti-Irani, A., Shokohizadeh, L. (2021). Investigation of antibiotic resistance and biofilm formation in clinical isolates of *Klebsiella pneumoniae*. *International Journal of Microbiology*, 5573388.

Liu, Y., Liu, X., Xu, H., Zhang, X., Liu, R., Chen, M., Qian, J. (2024). Genomic and phenotypic characterization of ST2012 clinical *Klebsiella quasipneumoniae* subsp. *similipneumoniae* harbouring *blaNDM-1* in China. *BMC Microbiology*, 24, 506.

Mijović, G., Ćizmović, L., Vuković, M.N., Stamatović, S., Lopićić, M. (2020). Antibiotic consumption in hospitals and resistance rate of *Klebsiella pneumoniae* and *Escherichia coli* in Montenegro. *Acta clinica Croatica*, 59(3), 469-479.

Mike-Ogburia, M.I., Monsi, T.P., Nwokah, E.G. (2025). Prevalence and determinants of multidrug-resistant uropathogenic *Klebsiella* species and associated antimicrobial resistance genes in Port Harcourt, Nigeria. *BMC Infectious Diseases*, 25, 1036.

Nirwati, H., Sinanjung, K., Fahrurissa, F., Wijaya, F., Napitupulu, S., Hati, V.P., Hakim, M.S., Meliala, A., Aman, A.T., Nuryastuti, T. (2019). Biofilm formation and antibiotic resistance of *Klebsiella pneumoniae* isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. *BMC Proceedings*, 13 (11), 20.

Nwafia, I.N., Ohanu, M.E., Ebede, S.O., Ozumba, U.C. (2019). Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase producing *Escherichia coli* in a Tertiary Hospital

in Enugu, Nigeria. *Annals of Clinical Microbiology and Antimicrobials*, 18(1), 41.

Ogbolu, D.O., Akinlabi, A.M., Oluremi, A.S., Oke, A.A., Webber, M.A. (2022). Emergence of Diarrhoeagenic *Klebsiella pneumoniae* carrying *astA* and *senB* genes in Nigeria. *African Journal of Microbiology Research*, 16(7), 264-267.

Otokunefor, K., Tamunokuro, E., Amadi, A. (2019). Molecular detection of mobilized colistin resistance (*mcr-1*) gene in *Escherichia coli* isolates from Port Harcourt, Nigeria. *Journal of Applied Sciences and Environmental Management*, 23(3), 401-405.

Otokunefor, K., Agbude, P., Otokunefor, T.V. (2018). Non-clinical isolates as potential reservoirs of antibiotic resistance in Port Harcourt, Nigeria. *Pan African Medical Journal*, 30(167).

Pandukur, S.G., Sambo, T.T., Plangnan, A.G. (2020). Prevalence of bacterial pathogens associated with wound infections from diabetic outpatients at Plateau Specialist Hospital, Jos, Nigeria. *Open Journal of Bioscience Research*, 1(2), 1-11.

Pourmohammad-Hosseini, G., Ghandehari, F., Hoveida, L. (2023). The abundance of capsule (*wabG*) and fimbria (*fimH*) coding genes in multidrug-resistant *Klebsiella pneumoniae* strains isolated from patients admitted to Isfahan hospitals. *Microbiology, Metabolites and Biotechnology*, 6(1), 27-34.

Prastyianto, M.E., Darmawati, S., Daryono, B.S., Retnaningrum, E. (2024). Examining the prevalence and antimicrobial resistance profiles of multidrug-resistant bacterial isolates in wound infections from Indonesian patients. *Narra J*, 4(2), 980.

Puca, V., Marulli, R.Z., Grande, R., Vitale, I., Niro, A., Molinaro, G., Prezioso, S., Muraro, R., Giovanni P. (2021). Microbial species isolated from infected wounds and antimicrobial resistance analysis: Data emerging from a three-year retrospective study. *Antibiotics (Basel)*, 10(10), 1162.

Qaisar, M.U., Aslam, B., Rasool, M.H., Zahid, A. (2023). Occurrence and antimicrobial profiling of *Klebsiella pneumoniae* in burn patients at burn ward, Allied Hospital, Faisalabad. *African journal of biological sciences*, 5(3), 156-164.

Schroll, C., Barken, K.B., Krogfelt, K.A., Struve, C. (2010). Role of type 1 and type 3 fimbriae in *Klebsiella pneumoniae* biofilm formation. *BMC Microbiology*, 10,179.

Shakib, P., Kalani, M.T., Ramazanzadeh, R., Ahmadi, A., Samaneh, R. (2018). Molecular detection of virulence genes in *Klebsiella Pneumoniae* clinical isolates from Kurdistan Province, Iran. *Biomedical Research and Therapy*, 5 (8), 2581-2589.

Soltan, M.D., Khalifeh, M., Yazdi, S.S., Mehrani, F., Hadayatpour, A., Sharifi, M.K.Y. (2018). Antimicrobial resistance pattern of *Klebsiella* spp isolated from patients in Tehran, Iran. *Journal Surgery and Medicine*, 2(2),84-86.

Stahlhut, S.G., Chattopadhyay, S., Struve, C., Weissman, S.J., Aprikian, P., Libby, S.J., Fang, F.C., Krogfelt, K.A., Sokurenko, E.V. (2009). Population variability of the FimH type 1 fimbrial adhesin in *Klebsiella pneumoniae*. *Journal of bacteriology*, 191(6), 1941-1950.

Stahlhut, S.G., Schroll, C., Harmsen, M., Struve, C., Krogfelt, K.A. (2010). Screening for genes involved in *Klebsiella pneumoniae* biofilm formation using a fosmid library. *FEMS Immunology & Medical Microbiology*, 59(3), 521-524.

Swedan, S.F., Aldakhily, D.B. (2024). Antimicrobial resistance, biofilm formation, and molecular detection of efflux pump and biofilm genes among *Klebsiella pneumoniae* clinical isolates from Northern Jordan. *Helijon*, 10(14).

Taher, N.A., Baqir, B.A., Abdul, F.R. (2016). A study on the effect of Ethidium Bromide on virulence factors (Protease and Biofilm Formation) by *Klebsiella pneumoniae* isolated from different Clinical Sources. *Historical Research Letter*, 30,2224-3178.

Wang, B., Zhang, P., Li, Y., Wang, Y. (2019). *Klebsiella pneumoniae*-induced multiple invasive abscesses: A case report and literature review. *Medicine*, 98(39), e17362.

Wasfi, R., Abd El-Rahman, O.A., Mansour, L.E., Hanora, A.S., Hashem, A. M., Ashour, M.S. (2012). Antimicrobial activities against biofilm formed by *Proteus mirabilis* isolates from wound and urinary tract infections. *Indian Journal of Medical Microbiology*, 30,76-80.

Yang, Y., Fu, X., Cai, Z., Qiu, Y., Mao, L. (2021). The occurrence of *Klebsiella pneumoniae* in drainage fluid after Pancreaticoduodenectomy: risk factors and clinical impacts. *Frontiers in Microbiology*, 12,763296.

Zhu, J., Wang, T., Chen, L., Du, H. (2021). Virulence factors in hypervirulent *Klebsiella pneumoniae*. *Frontiers in Microbiology*, 12, 642484.